Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funline Structured version   Visualization version   GIF version

Theorem funline 31419
 Description: Show that the Line relationship is a function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funline Fun Line

Proof of Theorem funline
Dummy variables 𝑎 𝑏 𝑘 𝑙 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3086 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) ↔ (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
2 eqtr3 2631 . . . . . . . . 9 ((𝑙 = [⟨𝑎, 𝑏⟩] Colinear ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) → 𝑙 = 𝑘)
32ad2ant2l 778 . . . . . . . 8 ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
43a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
54rexlimivv 3018 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
61, 5sylbir 224 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
76gen2 1714 . . . 4 𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘)
8 eqeq1 2614 . . . . . . . 8 (𝑙 = 𝑘 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
98anbi2d 736 . . . . . . 7 (𝑙 = 𝑘 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
109rexbidv 3034 . . . . . 6 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
11 fveq2 6103 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1211eleq2d 2673 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝑎 ∈ (𝔼‘𝑚)))
1311eleq2d 2673 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝑏 ∈ (𝔼‘𝑚)))
1412, 133anbi12d 1392 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏)))
1514anbi1d 737 . . . . . . 7 (𝑛 = 𝑚 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1615cbvrexv 3148 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear ))
1710, 16syl6bb 275 . . . . 5 (𝑙 = 𝑘 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )))
1817mo4 2505 . . . 4 (∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∀𝑙𝑘((∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ∧ ∃𝑚 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑚) ∧ 𝑏 ∈ (𝔼‘𝑚) ∧ 𝑎𝑏) ∧ 𝑘 = [⟨𝑎, 𝑏⟩] Colinear )) → 𝑙 = 𝑘))
197, 18mpbir 220 . . 3 ∃*𝑙𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )
2019funoprab 6658 . 2 Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
21 df-line2 31414 . . 3 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
2221funeqi 5824 . 2 (Fun Line ↔ Fun {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
2320, 22mpbir 220 1 Fun Line
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031  ∀wal 1473   = wceq 1475   ∈ wcel 1977  ∃*wmo 2459   ≠ wne 2780  ∃wrex 2897  ⟨cop 4131  ◡ccnv 5037  Fun wfun 5798  ‘cfv 5804  {coprab 6550  [cec 7627  ℕcn 10897  𝔼cee 25568   Colinear ccolin 31314  Linecline2 31411 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-iota 5768  df-fun 5806  df-fv 5812  df-oprab 6553  df-line2 31414 This theorem is referenced by:  fvline  31421
 Copyright terms: Public domain W3C validator