Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem1 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem1 41828
 Description: Lemma 1 for funcringcsetcALTV2 41837. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
Assertion
Ref Expression
funcringcsetcALTV2lem1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐹(𝑥)

Proof of Theorem funcringcsetcALTV2lem1
StepHypRef Expression
1 funcringcsetcALTV2.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
21adantr 480 . 2 ((𝜑𝑋𝐵) → 𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
3 fveq2 6103 . . 3 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
43adantl 481 . 2 (((𝜑𝑋𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
5 simpr 476 . 2 ((𝜑𝑋𝐵) → 𝑋𝐵)
6 fvex 6113 . . 3 (Base‘𝑋) ∈ V
76a1i 11 . 2 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ V)
82, 4, 5, 7fvmptd 6197 1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ↦ cmpt 4643  ‘cfv 5804  WUnicwun 9401  Basecbs 15695  SetCatcsetc 16548  RingCatcringc 41795 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812 This theorem is referenced by:  funcringcsetcALTV2lem2  41829  funcringcsetcALTV2lem7  41834  funcringcsetcALTV2lem8  41835  funcringcsetcALTV2lem9  41836
 Copyright terms: Public domain W3C validator