Step | Hyp | Ref
| Expression |
1 | | frrlem4.1 |
. . . . . 6
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} |
2 | 1 | frrlem2 31025 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
3 | | funfn 5833 |
. . . . 5
⊢ (Fun
𝑔 ↔ 𝑔 Fn dom 𝑔) |
4 | 2, 3 | sylib 207 |
. . . 4
⊢ (𝑔 ∈ 𝐵 → 𝑔 Fn dom 𝑔) |
5 | | fnresin1 5919 |
. . . 4
⊢ (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝑔 ∈ 𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
7 | 6 | adantr 480 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
8 | | inss1 3795 |
. . . . . . . 8
⊢ (dom
𝑔 ∩ dom ℎ) ⊆ dom 𝑔 |
9 | 8 | sseli 3564 |
. . . . . . 7
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → 𝑎 ∈ dom 𝑔) |
10 | 1 | frrlem1 31024 |
. . . . . . . . 9
⊢ 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))} |
11 | 10 | abeq2i 2722 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
12 | | fndm 5904 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏) |
13 | | rsp 2913 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ 𝑏 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
14 | 13 | 3ad2ant3 1077 |
. . . . . . . . . . 11
⊢ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ 𝑏 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
15 | | eleq2 2677 |
. . . . . . . . . . . 12
⊢ (dom
𝑔 = 𝑏 → (𝑎 ∈ dom 𝑔 ↔ 𝑎 ∈ 𝑏)) |
16 | 15 | imbi1d 330 |
. . . . . . . . . . 11
⊢ (dom
𝑔 = 𝑏 → ((𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ↔ (𝑎 ∈ 𝑏 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
17 | 14, 16 | syl5ibrcom 236 |
. . . . . . . . . 10
⊢ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (dom 𝑔 = 𝑏 → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
18 | 12, 17 | mpan9 485 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
19 | 18 | exlimiv 1845 |
. . . . . . . 8
⊢
(∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
20 | 11, 19 | sylbi 206 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
21 | 9, 20 | syl5 33 |
. . . . . 6
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
22 | 21 | imp 444 |
. . . . 5
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
23 | 22 | adantlr 747 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
24 | | fvres 6117 |
. . . . 5
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
25 | 24 | adantl 481 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
26 | | resres 5329 |
. . . . . 6
⊢ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) |
27 | | predss 5604 |
. . . . . . . . 9
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) |
28 | | sseqin2 3779 |
. . . . . . . . 9
⊢
(Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) |
29 | 27, 28 | mpbi 219 |
. . . . . . . 8
⊢ ((dom
𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) |
30 | 1 | frrlem1 31024 |
. . . . . . . . . . . 12
⊢ 𝐵 = {ℎ ∣ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))} |
31 | 30 | abeq2i 2722 |
. . . . . . . . . . 11
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
32 | | eeanv 2170 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))))) |
33 | | simpl1 1057 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → 𝑏 ⊆ 𝐴) |
34 | | ssinss1 3803 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ⊆ 𝐴 → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
36 | | simpl2 1058 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) |
37 | | simpr2 1061 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) |
38 | | nfra1 2925 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 |
39 | | nfra1 2925 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 |
40 | 38, 39 | nfan 1816 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎(∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) |
41 | | inss1 3795 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ∩ 𝑐) ⊆ 𝑏 |
42 | 41 | sseli 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑏) |
43 | | rsp 2913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎 ∈ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
44 | 42, 43 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
45 | | inss2 3796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 ∩ 𝑐) ⊆ 𝑐 |
46 | 45 | sseli 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑐) |
47 | | rsp 2913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑎 ∈
𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎 ∈ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
48 | 46, 47 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
49 | 44, 48 | anim12d 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → ((∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) |
50 | | ssin 3797 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
51 | 50 | biimpi 205 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
52 | 49, 51 | syl6com 36 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏 ∩ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
53 | 40, 52 | ralrimi 2940 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
54 | 36, 37, 53 | syl2anc 691 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
55 | | fndm 5904 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ Fn 𝑐 → dom ℎ = 𝑐) |
56 | | ineq12 3771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (dom 𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐)) |
57 | 56 | sseq1d 3595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ↔ (𝑏 ∩ 𝑐) ⊆ 𝐴)) |
58 | | sseq2 3590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
59 | 58 | raleqbi1dv 3123 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
60 | 56, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
61 | 57, 60 | anbi12d 743 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
𝑔 = 𝑏 ∧ dom ℎ = 𝑐) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) |
62 | 12, 55, 61 | syl2an 493 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) |
63 | 62 | biimprcd 239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) → ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)))) |
64 | 35, 54, 63 | syl2anc 691 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)))) |
65 | 64 | impcom 445 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
66 | 65 | an4s 865 |
. . . . . . . . . . . . 13
⊢ (((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
67 | 66 | exlimivv 1847 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
68 | 32, 67 | sylbir 224 |
. . . . . . . . . . 11
⊢
((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝑎𝐺(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
69 | 11, 31, 68 | syl2anb 495 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
70 | 69 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
71 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) |
72 | | preddowncl 5624 |
. . . . . . . . 9
⊢ (((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))) |
73 | 70, 71, 72 | sylc 63 |
. . . . . . . 8
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)) |
74 | 29, 73 | syl5eq 2656 |
. . . . . . 7
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎)) |
75 | 74 | reseq2d 5317 |
. . . . . 6
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
76 | 26, 75 | syl5eq 2656 |
. . . . 5
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
77 | 76 | oveq2d 6565 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑎𝐺(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
78 | 23, 25, 77 | 3eqtr4d 2654 |
. . 3
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
79 | 78 | ralrimiva 2949 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
80 | 7, 79 | jca 553 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑎𝐺((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |