Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege55lem2a | Structured version Visualization version GIF version |
Description: Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege55lem2a | ⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 210 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
2 | frege54cor0a 37177 | . . 3 ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | |
3 | 1, 2 | sylib 207 | . 2 ⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) |
4 | 3 | idi 2 | 1 ⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 if-wif 1006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege28 37144 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |