Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bicom1 | Structured version Visualization version GIF version |
Description: Commutative law for the biconditional. (Contributed by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
bicom1 | ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 209 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
2 | biimp 204 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
3 | 1, 2 | impbid 201 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 |
This theorem is referenced by: bicom 211 bicomi 213 con3ALT 1026 rp-fakenanass 36879 frege55aid 37179 frege55lem2a 37181 bisaiaisb 39729 confun4 39758 confun5 39759 |
Copyright terms: Public domain | W3C validator |