Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege54cor0a Structured version   Visualization version   GIF version

Theorem frege54cor0a 37177
 Description: Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege54cor0a ((𝜓𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑))

Proof of Theorem frege54cor0a
StepHypRef Expression
1 ax-frege28 37144 . . . 4 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
21anim2i 591 . . 3 (((𝜓𝜑) ∧ (𝜑𝜓)) → ((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)))
3 con4 111 . . . 4 ((¬ 𝜓 → ¬ 𝜑) → (𝜑𝜓))
43anim2i 591 . . 3 (((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)) → ((𝜓𝜑) ∧ (𝜑𝜓)))
52, 4impbii 198 . 2 (((𝜓𝜑) ∧ (𝜑𝜓)) ↔ ((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)))
6 dfbi2 658 . 2 ((𝜓𝜑) ↔ ((𝜓𝜑) ∧ (𝜑𝜓)))
7 dfifp2 1008 . 2 (if-(𝜓, 𝜑, ¬ 𝜑) ↔ ((𝜓𝜑) ∧ (¬ 𝜓 → ¬ 𝜑)))
85, 6, 73bitr4i 291 1 ((𝜓𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  if-wif 1006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-frege28 37144 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007 This theorem is referenced by:  frege54cor1a  37178  frege55lem1a  37180  frege55lem2a  37181
 Copyright terms: Public domain W3C validator