Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnb Structured version   Visualization version   GIF version

Theorem fnsnb 6337
 Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.)
Hypothesis
Ref Expression
fnsnb.1 𝐴 ∈ V
Assertion
Ref Expression
fnsnb (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})

Proof of Theorem fnsnb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnresdm 5914 . . . . . . . 8 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) = 𝐹)
2 fnfun 5902 . . . . . . . . 9 (𝐹 Fn {𝐴} → Fun 𝐹)
3 funressn 6331 . . . . . . . . 9 (Fun 𝐹 → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
42, 3syl 17 . . . . . . . 8 (𝐹 Fn {𝐴} → (𝐹 ↾ {𝐴}) ⊆ {⟨𝐴, (𝐹𝐴)⟩})
51, 4eqsstr3d 3603 . . . . . . 7 (𝐹 Fn {𝐴} → 𝐹 ⊆ {⟨𝐴, (𝐹𝐴)⟩})
65sseld 3567 . . . . . 6 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
7 elsni 4142 . . . . . 6 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} → 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
86, 7syl6 34 . . . . 5 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
9 df-fn 5807 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴}))
10 fnsnb.1 . . . . . . . . . . 11 𝐴 ∈ V
1110snid 4155 . . . . . . . . . 10 𝐴 ∈ {𝐴}
12 eleq2 2677 . . . . . . . . . 10 (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴}))
1311, 12mpbiri 247 . . . . . . . . 9 (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹)
1413anim2i 591 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹𝐴 ∈ dom 𝐹))
159, 14sylbi 206 . . . . . . 7 (𝐹 Fn {𝐴} → (Fun 𝐹𝐴 ∈ dom 𝐹))
16 funfvop 6237 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
1715, 16syl 17 . . . . . 6 (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
18 eleq1 2676 . . . . . 6 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1917, 18syl5ibrcom 236 . . . . 5 (𝐹 Fn {𝐴} → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
208, 19impbid 201 . . . 4 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
21 velsn 4141 . . . 4 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
2220, 21syl6bbr 277 . . 3 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
2322eqrdv 2608 . 2 (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
24 fvex 6113 . . . 4 (𝐹𝐴) ∈ V
2510, 24fnsn 5860 . . 3 {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}
26 fneq1 5893 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2725, 26mpbiri 247 . 2 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴})
2823, 27impbii 198 1 (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  {csn 4125  ⟨cop 4131  dom cdm 5038   ↾ cres 5040  Fun wfun 5798   Fn wfn 5799  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812 This theorem is referenced by:  fnprb  6377
 Copyright terms: Public domain W3C validator