Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneer Structured version   Visualization version   GIF version

Theorem fneer 31518
Description: Fineness intersected with its converse is an equivalence relation. (Contributed by Jeff Hankins, 6-Oct-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
fneval.1 = (Fne ∩ Fne)
Assertion
Ref Expression
fneer Er V

Proof of Theorem fneer
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . 2 (𝑥 = 𝑦 → (topGen‘𝑥) = (topGen‘𝑦))
2 fneval.1 . . . . . 6 = (Fne ∩ Fne)
3 inss1 3795 . . . . . 6 (Fne ∩ Fne) ⊆ Fne
42, 3eqsstri 3598 . . . . 5 ⊆ Fne
5 fnerel 31503 . . . . 5 Rel Fne
6 relss 5129 . . . . 5 ( ⊆ Fne → (Rel Fne → Rel ))
74, 5, 6mp2 9 . . . 4 Rel
8 dfrel4v 5503 . . . 4 (Rel = {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦})
97, 8mpbi 219 . . 3 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦}
10 vex 3176 . . . . 5 𝑥 ∈ V
11 vex 3176 . . . . 5 𝑦 ∈ V
122fneval 31517 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦)))
1310, 11, 12mp2an 704 . . . 4 (𝑥 𝑦 ↔ (topGen‘𝑥) = (topGen‘𝑦))
1413opabbii 4649 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 𝑦} = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)}
159, 14eqtri 2632 . 2 = {⟨𝑥, 𝑦⟩ ∣ (topGen‘𝑥) = (topGen‘𝑦)}
161, 15eqer 7664 1 Er V
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540   class class class wbr 4583  {copab 4642  ccnv 5037  Rel wrel 5043  cfv 5804   Er wer 7626  topGenctg 15921  Fnecfne 31501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-er 7629  df-topgen 15927  df-fne 31502
This theorem is referenced by:  topfneec  31520  topfneec2  31521
  Copyright terms: Public domain W3C validator