MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereldm Structured version   Visualization version   GIF version

Theorem ereldm 7677
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1 (𝜑𝑅 Er 𝑋)
ereldm.2 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Assertion
Ref Expression
ereldm (𝜑 → (𝐴𝑋𝐵𝑋))

Proof of Theorem ereldm
StepHypRef Expression
1 ereldm.2 . . . 4 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
21neeq1d 2841 . . 3 (𝜑 → ([𝐴]𝑅 ≠ ∅ ↔ [𝐵]𝑅 ≠ ∅))
3 ecdmn0 7676 . . 3 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)
4 ecdmn0 7676 . . 3 (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅)
52, 3, 43bitr4g 302 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅))
6 ereldm.1 . . . 4 (𝜑𝑅 Er 𝑋)
7 erdm 7639 . . . 4 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
86, 7syl 17 . . 3 (𝜑 → dom 𝑅 = 𝑋)
98eleq2d 2673 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐴𝑋))
108eleq2d 2673 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐵𝑋))
115, 9, 103bitr3d 297 1 (𝜑 → (𝐴𝑋𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wne 2780  c0 3874  dom cdm 5038   Er wer 7626  [cec 7627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-er 7629  df-ec 7631
This theorem is referenced by:  erth  7678  brecop  7727  eceqoveq  7740
  Copyright terms: Public domain W3C validator