MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvmptrab1 Structured version   Visualization version   GIF version

Theorem elfvmptrab1 6213
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Hypotheses
Ref Expression
elfvmptrab1.f 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
elfvmptrab1.v (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
Assertion
Ref Expression
elfvmptrab1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑉   𝑥,𝑋,𝑦   𝑦,𝑌   𝑦,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐹(𝑥,𝑦,𝑚)   𝑀(𝑚)   𝑉(𝑦,𝑚)   𝑋(𝑚)   𝑌(𝑥,𝑚)

Proof of Theorem elfvmptrab1
StepHypRef Expression
1 ne0i 3880 . . 3 (𝑌 ∈ (𝐹𝑋) → (𝐹𝑋) ≠ ∅)
2 ndmfv 6128 . . . 4 𝑋 ∈ dom 𝐹 → (𝐹𝑋) = ∅)
32necon1ai 2809 . . 3 ((𝐹𝑋) ≠ ∅ → 𝑋 ∈ dom 𝐹)
4 elfvmptrab1.f . . . . . . . 8 𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})
54dmmptss 5548 . . . . . . 7 dom 𝐹𝑉
65sseli 3564 . . . . . 6 (𝑋 ∈ dom 𝐹𝑋𝑉)
7 elfvmptrab1.v . . . . . . 7 (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)
8 rabexg 4739 . . . . . . 7 (𝑋 / 𝑚𝑀 ∈ V → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
96, 7, 83syl 18 . . . . . 6 (𝑋 ∈ dom 𝐹 → {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V)
10 nfcv 2751 . . . . . . 7 𝑥𝑋
11 nfsbc1v 3422 . . . . . . . 8 𝑥[𝑋 / 𝑥]𝜑
12 nfcv 2751 . . . . . . . . 9 𝑥𝑀
1310, 12nfcsb 3517 . . . . . . . 8 𝑥𝑋 / 𝑚𝑀
1411, 13nfrab 3100 . . . . . . 7 𝑥{𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}
15 csbeq1 3502 . . . . . . . 8 (𝑥 = 𝑋𝑥 / 𝑚𝑀 = 𝑋 / 𝑚𝑀)
16 sbceq1a 3413 . . . . . . . 8 (𝑥 = 𝑋 → (𝜑[𝑋 / 𝑥]𝜑))
1715, 16rabeqbidv 3168 . . . . . . 7 (𝑥 = 𝑋 → {𝑦𝑥 / 𝑚𝑀𝜑} = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
1810, 14, 17, 4fvmptf 6209 . . . . . 6 ((𝑋𝑉 ∧ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} ∈ V) → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
196, 9, 18syl2anc 691 . . . . 5 (𝑋 ∈ dom 𝐹 → (𝐹𝑋) = {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑})
2019eleq2d 2673 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}))
21 elrabi 3328 . . . . . 6 (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → 𝑌𝑋 / 𝑚𝑀)
226, 21anim12i 588 . . . . 5 ((𝑋 ∈ dom 𝐹𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑}) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
2322ex 449 . . . 4 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ {𝑦𝑋 / 𝑚𝑀[𝑋 / 𝑥]𝜑} → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2420, 23sylbid 229 . . 3 (𝑋 ∈ dom 𝐹 → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
251, 3, 243syl 18 . 2 (𝑌 ∈ (𝐹𝑋) → (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀)))
2625pm2.43i 50 1 (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  [wsbc 3402  csb 3499  c0 3874  cmpt 4643  dom cdm 5038  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  elfvmptrab  6214
  Copyright terms: Public domain W3C validator