Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochffval Structured version   Visualization version   GIF version

Theorem dochffval 35656
 Description: Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b 𝐵 = (Base‘𝐾)
dochval.g 𝐺 = (glb‘𝐾)
dochval.o = (oc‘𝐾)
dochval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
dochffval (𝐾𝑉 → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
Distinct variable groups:   𝑦,𝐵   𝑤,𝐻   𝑥,𝑤,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑥,𝑤)   𝐺(𝑥,𝑦,𝑤)   𝐻(𝑥,𝑦)   (𝑥,𝑦,𝑤)   𝑉(𝑥,𝑦,𝑤)

Proof of Theorem dochffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6103 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 dochval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2662 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6103 . . . . . . . 8 (𝑘 = 𝐾 → (DVecH‘𝑘) = (DVecH‘𝐾))
65fveq1d 6105 . . . . . . 7 (𝑘 = 𝐾 → ((DVecH‘𝑘)‘𝑤) = ((DVecH‘𝐾)‘𝑤))
76fveq2d 6107 . . . . . 6 (𝑘 = 𝐾 → (Base‘((DVecH‘𝑘)‘𝑤)) = (Base‘((DVecH‘𝐾)‘𝑤)))
87pweqd 4113 . . . . 5 (𝑘 = 𝐾 → 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) = 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)))
9 fveq2 6103 . . . . . . 7 (𝑘 = 𝐾 → (DIsoH‘𝑘) = (DIsoH‘𝐾))
109fveq1d 6105 . . . . . 6 (𝑘 = 𝐾 → ((DIsoH‘𝑘)‘𝑤) = ((DIsoH‘𝐾)‘𝑤))
11 fveq2 6103 . . . . . . . 8 (𝑘 = 𝐾 → (oc‘𝑘) = (oc‘𝐾))
12 dochval.o . . . . . . . 8 = (oc‘𝐾)
1311, 12syl6eqr 2662 . . . . . . 7 (𝑘 = 𝐾 → (oc‘𝑘) = )
14 fveq2 6103 . . . . . . . . 9 (𝑘 = 𝐾 → (glb‘𝑘) = (glb‘𝐾))
15 dochval.g . . . . . . . . 9 𝐺 = (glb‘𝐾)
1614, 15syl6eqr 2662 . . . . . . . 8 (𝑘 = 𝐾 → (glb‘𝑘) = 𝐺)
17 fveq2 6103 . . . . . . . . . 10 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
18 dochval.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
1917, 18syl6eqr 2662 . . . . . . . . 9 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
2010fveq1d 6105 . . . . . . . . . 10 (𝑘 = 𝐾 → (((DIsoH‘𝑘)‘𝑤)‘𝑦) = (((DIsoH‘𝐾)‘𝑤)‘𝑦))
2120sseq2d 3596 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦) ↔ 𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)))
2219, 21rabeqbidv 3168 . . . . . . . 8 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)} = {𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})
2316, 22fveq12d 6109 . . . . . . 7 (𝑘 = 𝐾 → ((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}) = (𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))
2413, 23fveq12d 6109 . . . . . 6 (𝑘 = 𝐾 → ((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})) = ( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))
2510, 24fveq12d 6109 . . . . 5 (𝑘 = 𝐾 → (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))) = (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))
268, 25mpteq12dv 4663 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))) = (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)})))))
274, 26mpteq12dv 4663 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
28 df-doch 35655 . . 3 ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
29 fvex 6113 . . . . 5 (LHyp‘𝐾) ∈ V
303, 29eqeltri 2684 . . . 4 𝐻 ∈ V
3130mptex 6390 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))) ∈ V
3227, 28, 31fvmpt 6191 . 2 (𝐾 ∈ V → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
331, 32syl 17 1 (𝐾𝑉 → (ocH‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (((DIsoH‘𝐾)‘𝑤)‘( ‘(𝐺‘{𝑦𝐵𝑥 ⊆ (((DIsoH‘𝐾)‘𝑤)‘𝑦)}))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173   ⊆ wss 3540  𝒫 cpw 4108   ↦ cmpt 4643  ‘cfv 5804  Basecbs 15695  occoc 15776  glbcglb 16766  LHypclh 34288  DVecHcdvh 35385  DIsoHcdih 35535  ocHcoch 35654 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-doch 35655 This theorem is referenced by:  dochfval  35657
 Copyright terms: Public domain W3C validator