Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difeq Structured version   Visualization version   GIF version

Theorem difeq 28739
Description: Rewriting an equation with class difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Assertion
Ref Expression
difeq ((𝐴𝐵) = 𝐶 ↔ ((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)))

Proof of Theorem difeq
StepHypRef Expression
1 incom 3767 . . . . 5 (𝐵 ∩ (𝐴𝐵)) = ((𝐴𝐵) ∩ 𝐵)
2 disjdif 3992 . . . . 5 (𝐵 ∩ (𝐴𝐵)) = ∅
31, 2eqtr3i 2634 . . . 4 ((𝐴𝐵) ∩ 𝐵) = ∅
4 ineq1 3769 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) ∩ 𝐵) = (𝐶𝐵))
53, 4syl5reqr 2659 . . 3 ((𝐴𝐵) = 𝐶 → (𝐶𝐵) = ∅)
6 undif1 3995 . . . 4 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
7 uneq1 3722 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) ∪ 𝐵) = (𝐶𝐵))
86, 7syl5reqr 2659 . . 3 ((𝐴𝐵) = 𝐶 → (𝐶𝐵) = (𝐴𝐵))
95, 8jca 553 . 2 ((𝐴𝐵) = 𝐶 → ((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)))
10 simpl 472 . . . 4 (((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)) → (𝐶𝐵) = ∅)
11 disj3 3973 . . . . 5 ((𝐶𝐵) = ∅ ↔ 𝐶 = (𝐶𝐵))
12 eqcom 2617 . . . . 5 (𝐶 = (𝐶𝐵) ↔ (𝐶𝐵) = 𝐶)
1311, 12bitri 263 . . . 4 ((𝐶𝐵) = ∅ ↔ (𝐶𝐵) = 𝐶)
1410, 13sylib 207 . . 3 (((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)) → (𝐶𝐵) = 𝐶)
15 difeq1 3683 . . . . . 6 ((𝐶𝐵) = (𝐴𝐵) → ((𝐶𝐵) ∖ 𝐵) = ((𝐴𝐵) ∖ 𝐵))
16 difun2 4000 . . . . . 6 ((𝐶𝐵) ∖ 𝐵) = (𝐶𝐵)
17 difun2 4000 . . . . . 6 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
1815, 16, 173eqtr3g 2667 . . . . 5 ((𝐶𝐵) = (𝐴𝐵) → (𝐶𝐵) = (𝐴𝐵))
1918eqeq1d 2612 . . . 4 ((𝐶𝐵) = (𝐴𝐵) → ((𝐶𝐵) = 𝐶 ↔ (𝐴𝐵) = 𝐶))
2019adantl 481 . . 3 (((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)) → ((𝐶𝐵) = 𝐶 ↔ (𝐴𝐵) = 𝐶))
2114, 20mpbid 221 . 2 (((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)) → (𝐴𝐵) = 𝐶)
229, 21impbii 198 1 ((𝐴𝐵) = 𝐶 ↔ ((𝐶𝐵) = ∅ ∧ (𝐶𝐵) = (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  cdif 3537  cun 3538  cin 3539  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875
This theorem is referenced by:  difioo  28934
  Copyright terms: Public domain W3C validator