Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difeq Structured version   Unicode version

Theorem difeq 27830
 Description: Rewriting an equation with set difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Assertion
Ref Expression
difeq

Proof of Theorem difeq
StepHypRef Expression
1 incom 3632 . . . . 5
2 disjdif 3844 . . . . 5
31, 2eqtr3i 2433 . . . 4
4 ineq1 3634 . . . 4
53, 4syl5reqr 2458 . . 3
6 undif1 3847 . . . 4
7 uneq1 3590 . . . 4
86, 7syl5reqr 2458 . . 3
95, 8jca 530 . 2
10 simpl 455 . . . 4
11 disj3 3814 . . . . 5
12 eqcom 2411 . . . . 5
1311, 12bitri 249 . . . 4
1410, 13sylib 196 . . 3
15 difeq1 3554 . . . . . 6
16 difun2 3851 . . . . . 6
17 difun2 3851 . . . . . 6
1815, 16, 173eqtr3g 2466 . . . . 5
1918eqeq1d 2404 . . . 4
2019adantl 464 . . 3
2114, 20mpbid 210 . 2
229, 21impbii 187 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 367   wceq 1405   cdif 3411   cun 3412   cin 3413  c0 3738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739 This theorem is referenced by:  difioo  28041
 Copyright terms: Public domain W3C validator