Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difeq Structured version   Unicode version

Theorem difeq 26071
Description: Rewriting an equation with set difference, without using quantifiers. (Contributed by Thierry Arnoux, 24-Sep-2017.)
Assertion
Ref Expression
difeq  |-  ( ( A  \  B )  =  C  <->  ( ( C  i^i  B )  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) ) )

Proof of Theorem difeq
StepHypRef Expression
1 incom 3654 . . . . 5  |-  ( B  i^i  ( A  \  B ) )  =  ( ( A  \  B )  i^i  B
)
2 disjdif 3862 . . . . 5  |-  ( B  i^i  ( A  \  B ) )  =  (/)
31, 2eqtr3i 2485 . . . 4  |-  ( ( A  \  B )  i^i  B )  =  (/)
4 ineq1 3656 . . . 4  |-  ( ( A  \  B )  =  C  ->  (
( A  \  B
)  i^i  B )  =  ( C  i^i  B ) )
53, 4syl5reqr 2510 . . 3  |-  ( ( A  \  B )  =  C  ->  ( C  i^i  B )  =  (/) )
6 undif1 3865 . . . 4  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
7 uneq1 3614 . . . 4  |-  ( ( A  \  B )  =  C  ->  (
( A  \  B
)  u.  B )  =  ( C  u.  B ) )
86, 7syl5reqr 2510 . . 3  |-  ( ( A  \  B )  =  C  ->  ( C  u.  B )  =  ( A  u.  B ) )
95, 8jca 532 . 2  |-  ( ( A  \  B )  =  C  ->  (
( C  i^i  B
)  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) ) )
10 simpl 457 . . . 4  |-  ( ( ( C  i^i  B
)  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) )  -> 
( C  i^i  B
)  =  (/) )
11 disj3 3834 . . . . 5  |-  ( ( C  i^i  B )  =  (/)  <->  C  =  ( C  \  B ) )
12 eqcom 2463 . . . . 5  |-  ( C  =  ( C  \  B )  <->  ( C  \  B )  =  C )
1311, 12bitri 249 . . . 4  |-  ( ( C  i^i  B )  =  (/)  <->  ( C  \  B )  =  C )
1410, 13sylib 196 . . 3  |-  ( ( ( C  i^i  B
)  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) )  -> 
( C  \  B
)  =  C )
15 difeq1 3578 . . . . . 6  |-  ( ( C  u.  B )  =  ( A  u.  B )  ->  (
( C  u.  B
)  \  B )  =  ( ( A  u.  B )  \  B ) )
16 difun2 3869 . . . . . 6  |-  ( ( C  u.  B ) 
\  B )  =  ( C  \  B
)
17 difun2 3869 . . . . . 6  |-  ( ( A  u.  B ) 
\  B )  =  ( A  \  B
)
1815, 16, 173eqtr3g 2518 . . . . 5  |-  ( ( C  u.  B )  =  ( A  u.  B )  ->  ( C  \  B )  =  ( A  \  B
) )
1918eqeq1d 2456 . . . 4  |-  ( ( C  u.  B )  =  ( A  u.  B )  ->  (
( C  \  B
)  =  C  <->  ( A  \  B )  =  C ) )
2019adantl 466 . . 3  |-  ( ( ( C  i^i  B
)  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) )  -> 
( ( C  \  B )  =  C  <-> 
( A  \  B
)  =  C ) )
2114, 20mpbid 210 . 2  |-  ( ( ( C  i^i  B
)  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) )  -> 
( A  \  B
)  =  C )
229, 21impbii 188 1  |-  ( ( A  \  B )  =  C  <->  ( ( C  i^i  B )  =  (/)  /\  ( C  u.  B )  =  ( A  u.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    \ cdif 3436    u. cun 3437    i^i cin 3438   (/)c0 3748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749
This theorem is referenced by:  difioo  26237
  Copyright terms: Public domain W3C validator