MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfinfre Structured version   Visualization version   GIF version

Theorem dfinfre 10881
Description: The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
dfinfre (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfinfre
StepHypRef Expression
1 df-inf 8232 . 2 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
2 df-sup 8231 . . 3 sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))}
3 ssel2 3563 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
4 lenlt 9995 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
5 vex 3176 . . . . . . . . . . . . 13 𝑥 ∈ V
6 vex 3176 . . . . . . . . . . . . 13 𝑦 ∈ V
75, 6brcnv 5227 . . . . . . . . . . . 12 (𝑥 < 𝑦𝑦 < 𝑥)
87notbii 309 . . . . . . . . . . 11 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
94, 8syl6rbbr 278 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
103, 9sylan2 490 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑦𝐴)) → (¬ 𝑥 < 𝑦𝑥𝑦))
1110ancoms 468 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 < 𝑦𝑥𝑦))
1211an32s 842 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑥 < 𝑦𝑥𝑦))
1312ralbidva 2968 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 𝑥𝑦))
146, 5brcnv 5227 . . . . . . . . 9 (𝑦 < 𝑥𝑥 < 𝑦)
15 vex 3176 . . . . . . . . . . 11 𝑧 ∈ V
166, 15brcnv 5227 . . . . . . . . . 10 (𝑦 < 𝑧𝑧 < 𝑦)
1716rexbii 3023 . . . . . . . . 9 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑧 < 𝑦)
1814, 17imbi12i 339 . . . . . . . 8 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
1918ralbii 2963 . . . . . . 7 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2019a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2113, 20anbi12d 743 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
2221rabbidva 3163 . . . 4 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
2322unieqd 4382 . . 3 (𝐴 ⊆ ℝ → {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))} = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
242, 23syl5eq 2656 . 2 (𝐴 ⊆ ℝ → sup(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
251, 24syl5eq 2656 1 (𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  wss 3540   cuni 4372   class class class wbr 4583  ccnv 5037  supcsup 8229  infcinf 8230  cr 9814   < clt 9953  cle 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-sup 8231  df-inf 8232  df-xr 9957  df-le 9959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator