MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrval Structured version   Visualization version   GIF version

Theorem dchrval 24759
Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g 𝐺 = (DChr‘𝑁)
dchrval.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrval.b 𝐵 = (Base‘𝑍)
dchrval.u 𝑈 = (Unit‘𝑍)
dchrval.n (𝜑𝑁 ∈ ℕ)
dchrval.d (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
Assertion
Ref Expression
dchrval (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑈   𝜑,𝑥   𝑥,𝑍
Allowed substitution hints:   𝐷(𝑥)   𝐺(𝑥)

Proof of Theorem dchrval
Dummy variables 𝑧 𝑛 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrval.g . 2 𝐺 = (DChr‘𝑁)
2 df-dchr 24758 . . . 4 DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩})
32a1i 11 . . 3 (𝜑 → DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩}))
4 fvex 6113 . . . . 5 (ℤ/nℤ‘𝑛) ∈ V
54a1i 11 . . . 4 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) ∈ V)
6 ovex 6577 . . . . . . 7 ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∈ V
76rabex 4740 . . . . . 6 {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} ∈ V
87a1i 11 . . . . 5 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} ∈ V)
9 dchrval.d . . . . . . . . . . 11 (𝜑𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
109ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
11 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
1211fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) = (ℤ/nℤ‘𝑁))
13 dchrval.z . . . . . . . . . . . . . . . 16 𝑍 = (ℤ/nℤ‘𝑁)
1412, 13syl6reqr 2663 . . . . . . . . . . . . . . 15 ((𝜑𝑛 = 𝑁) → 𝑍 = (ℤ/nℤ‘𝑛))
1514eqeq2d 2620 . . . . . . . . . . . . . 14 ((𝜑𝑛 = 𝑁) → (𝑧 = 𝑍𝑧 = (ℤ/nℤ‘𝑛)))
1615biimpar 501 . . . . . . . . . . . . 13 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝑧 = 𝑍)
1716fveq2d 6107 . . . . . . . . . . . 12 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (mulGrp‘𝑧) = (mulGrp‘𝑍))
1817oveq1d 6564 . . . . . . . . . . 11 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) = ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
1916fveq2d 6107 . . . . . . . . . . . . . . 15 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Base‘𝑧) = (Base‘𝑍))
20 dchrval.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑍)
2119, 20syl6eqr 2662 . . . . . . . . . . . . . 14 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Base‘𝑧) = 𝐵)
2216fveq2d 6107 . . . . . . . . . . . . . . 15 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Unit‘𝑧) = (Unit‘𝑍))
23 dchrval.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
2422, 23syl6eqr 2662 . . . . . . . . . . . . . 14 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (Unit‘𝑧) = 𝑈)
2521, 24difeq12d 3691 . . . . . . . . . . . . 13 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((Base‘𝑧) ∖ (Unit‘𝑧)) = (𝐵𝑈))
2625xpeq1d 5062 . . . . . . . . . . . 12 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) = ((𝐵𝑈) × {0}))
2726sseq1d 3595 . . . . . . . . . . 11 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → ((((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥 ↔ ((𝐵𝑈) × {0}) ⊆ 𝑥))
2818, 27rabeqbidv 3168 . . . . . . . . . 10 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} = {𝑥 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∣ ((𝐵𝑈) × {0}) ⊆ 𝑥})
2910, 28eqtr4d 2647 . . . . . . . . 9 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → 𝐷 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥})
3029eqeq2d 2620 . . . . . . . 8 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → (𝑏 = 𝐷𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}))
3130biimpar 501 . . . . . . 7 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → 𝑏 = 𝐷)
3231opeq2d 4347 . . . . . 6 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐷⟩)
3331sqxpeqd 5065 . . . . . . . 8 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → (𝑏 × 𝑏) = (𝐷 × 𝐷))
3433reseq2d 5317 . . . . . . 7 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ( ∘𝑓 · ↾ (𝑏 × 𝑏)) = ( ∘𝑓 · ↾ (𝐷 × 𝐷)))
3534opeq2d 4347 . . . . . 6 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩ = ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩)
3632, 35preq12d 4220 . . . . 5 ((((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) ∧ 𝑏 = {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥}) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
378, 36csbied 3526 . . . 4 (((𝜑𝑛 = 𝑁) ∧ 𝑧 = (ℤ/nℤ‘𝑛)) → {𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
385, 37csbied 3526 . . 3 ((𝜑𝑛 = 𝑁) → (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝑏 × 𝑏))⟩} = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
39 dchrval.n . . 3 (𝜑𝑁 ∈ ℕ)
40 prex 4836 . . . 4 {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩} ∈ V
4140a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩} ∈ V)
423, 38, 39, 41fvmptd 6197 . 2 (𝜑 → (DChr‘𝑁) = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
431, 42syl5eq 2656 1 (𝜑𝐺 = {⟨(Base‘ndx), 𝐷⟩, ⟨(+g‘ndx), ( ∘𝑓 · ↾ (𝐷 × 𝐷))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  csb 3499  cdif 3537  wss 3540  {csn 4125  {cpr 4127  cop 4131  cmpt 4643   × cxp 5036  cres 5040  cfv 5804  (class class class)co 6549  𝑓 cof 6793  0cc0 9815   · cmul 9820  cn 10897  ndxcnx 15692  Basecbs 15695  +gcplusg 15768   MndHom cmhm 17156  mulGrpcmgp 18312  Unitcui 18462  fldccnfld 19567  ℤ/nczn 19670  DChrcdchr 24757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-dchr 24758
This theorem is referenced by:  dchrbas  24760  dchrplusg  24772
  Copyright terms: Public domain W3C validator