Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabcsf Structured version   Visualization version   GIF version

Theorem cbvrabcsf 3534
 Description: A more general version of cbvrab 3171 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.)
Hypotheses
Ref Expression
cbvralcsf.1 𝑦𝐴
cbvralcsf.2 𝑥𝐵
cbvralcsf.3 𝑦𝜑
cbvralcsf.4 𝑥𝜓
cbvralcsf.5 (𝑥 = 𝑦𝐴 = 𝐵)
cbvralcsf.6 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabcsf {𝑥𝐴𝜑} = {𝑦𝐵𝜓}

Proof of Theorem cbvrabcsf
Dummy variables 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . 4 𝑧(𝑥𝐴𝜑)
2 nfcsb1v 3515 . . . . . 6 𝑥𝑧 / 𝑥𝐴
32nfcri 2745 . . . . 5 𝑥 𝑧𝑧 / 𝑥𝐴
4 nfs1v 2425 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1816 . . . 4 𝑥(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 id 22 . . . . . 6 (𝑥 = 𝑧𝑥 = 𝑧)
7 csbeq1a 3508 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
86, 7eleq12d 2682 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
9 sbequ12 2097 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
108, 9anbi12d 743 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)))
111, 5, 10cbvab 2733 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)}
12 nfcv 2751 . . . . . . 7 𝑦𝑧
13 cbvralcsf.1 . . . . . . 7 𝑦𝐴
1412, 13nfcsb 3517 . . . . . 6 𝑦𝑧 / 𝑥𝐴
1514nfcri 2745 . . . . 5 𝑦 𝑧𝑧 / 𝑥𝐴
16 cbvralcsf.3 . . . . . 6 𝑦𝜑
1716nfsb 2428 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1815, 17nfan 1816 . . . 4 𝑦(𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)
19 nfv 1830 . . . 4 𝑧(𝑦𝐵𝜓)
20 id 22 . . . . . 6 (𝑧 = 𝑦𝑧 = 𝑦)
21 csbeq1 3502 . . . . . . 7 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝑦 / 𝑥𝐴)
22 df-csb 3500 . . . . . . . 8 𝑦 / 𝑥𝐴 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
23 cbvralcsf.2 . . . . . . . . . . . 12 𝑥𝐵
2423nfcri 2745 . . . . . . . . . . 11 𝑥 𝑣𝐵
25 cbvralcsf.5 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝐵)
2625eleq2d 2673 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑣𝐴𝑣𝐵))
2724, 26sbie 2396 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐵)
28 sbsbc 3406 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴[𝑦 / 𝑥]𝑣𝐴)
2927, 28bitr3i 265 . . . . . . . . 9 (𝑣𝐵[𝑦 / 𝑥]𝑣𝐴)
3029abbi2i 2725 . . . . . . . 8 𝐵 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
3122, 30eqtr4i 2635 . . . . . . 7 𝑦 / 𝑥𝐴 = 𝐵
3221, 31syl6eq 2660 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝐵)
3320, 32eleq12d 2682 . . . . 5 (𝑧 = 𝑦 → (𝑧𝑧 / 𝑥𝐴𝑦𝐵))
34 sbequ 2364 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
35 cbvralcsf.4 . . . . . . 7 𝑥𝜓
36 cbvralcsf.6 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
3735, 36sbie 2396 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
3834, 37syl6bb 275 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
3933, 38anbi12d 743 . . . 4 (𝑧 = 𝑦 → ((𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐵𝜓)))
4018, 19, 39cbvab 2733 . . 3 {𝑧 ∣ (𝑧𝑧 / 𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐵𝜓)}
4111, 40eqtri 2632 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐵𝜓)}
42 df-rab 2905 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43 df-rab 2905 . 2 {𝑦𝐵𝜓} = {𝑦 ∣ (𝑦𝐵𝜓)}
4441, 42, 433eqtr4i 2642 1 {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  Ⅎwnf 1699  [wsb 1867   ∈ wcel 1977  {cab 2596  Ⅎwnfc 2738  {crab 2900  [wsbc 3402  ⦋csb 3499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-sbc 3403  df-csb 3500 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator