Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrab | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
cbvrab.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrab.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrab.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrab.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrab.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1830 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | |
2 | cbvrab.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2745 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfs1v 2425 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
5 | 3, 4 | nfan 1816 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
6 | eleq1 2676 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
7 | sbequ12 2097 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 6, 7 | anbi12d 743 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
9 | 1, 5, 8 | cbvab 2733 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} |
10 | cbvrab.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
11 | 10 | nfcri 2745 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
12 | cbvrab.3 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
13 | 12 | nfsb 2428 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
14 | 11, 13 | nfan 1816 | . . . 4 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
15 | nfv 1830 | . . . 4 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
16 | eleq1 2676 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
17 | sbequ 2364 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
18 | cbvrab.4 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
19 | cbvrab.5 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
20 | 18, 19 | sbie 2396 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
21 | 17, 20 | syl6bb 275 | . . . . 5 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
22 | 16, 21 | anbi12d 743 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
23 | 14, 15, 22 | cbvab 2733 | . . 3 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
24 | 9, 23 | eqtri 2632 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
25 | df-rab 2905 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
26 | df-rab 2905 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
27 | 24, 25, 26 | 3eqtr4i 2642 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 [wsb 1867 ∈ wcel 1977 {cab 2596 Ⅎwnfc 2738 {crab 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 |
This theorem is referenced by: cbvrabv 3172 elrabsf 3441 tfis 6946 cantnflem1 8469 scottexs 8633 scott0s 8634 elmptrab 21440 bnj1534 30177 scottexf 33146 scott0f 33147 eq0rabdioph 36358 rexrabdioph 36376 rexfrabdioph 36377 elnn0rabdioph 36385 dvdsrabdioph 36392 binomcxplemdvsum 37576 fnlimcnv 38734 fnlimabslt 38746 stoweidlem34 38927 stoweidlem59 38952 pimltmnf2 39588 pimgtpnf2 39594 pimltpnf2 39600 issmff 39620 smfpimltxrmpt 39645 smfpreimagtf 39654 smflim 39663 smfpimgtxr 39666 smfpimgtxrmpt 39670 |
Copyright terms: Public domain | W3C validator |