Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgval Structured version   Visualization version   GIF version

Theorem carsgval 29692
 Description: Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
carsgval (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
Distinct variable groups:   𝑀,𝑎,𝑒   𝑂,𝑎,𝑒   𝜑,𝑎,𝑒
Allowed substitution hints:   𝑉(𝑒,𝑎)

Proof of Theorem carsgval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 df-carsg 29691 . . 3 toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
21a1i 11 . 2 (𝜑 → toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)}))
3 simpr 476 . . . . . . . 8 ((𝜑𝑚 = 𝑀) → 𝑚 = 𝑀)
43dmeqd 5248 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑚 = dom 𝑀)
5 carsgval.2 . . . . . . . . 9 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
6 fdm 5964 . . . . . . . . 9 (𝑀:𝒫 𝑂⟶(0[,]+∞) → dom 𝑀 = 𝒫 𝑂)
75, 6syl 17 . . . . . . . 8 (𝜑 → dom 𝑀 = 𝒫 𝑂)
87adantr 480 . . . . . . 7 ((𝜑𝑚 = 𝑀) → dom 𝑀 = 𝒫 𝑂)
94, 8eqtrd 2644 . . . . . 6 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
109unieqd 4382 . . . . 5 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝒫 𝑂)
11 unipw 4845 . . . . 5 𝒫 𝑂 = 𝑂
1210, 11syl6eq 2660 . . . 4 ((𝜑𝑚 = 𝑀) → dom 𝑚 = 𝑂)
1312pweqd 4113 . . 3 ((𝜑𝑚 = 𝑀) → 𝒫 dom 𝑚 = 𝒫 𝑂)
14 fveq1 6102 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
15 fveq1 6102 . . . . . . 7 (𝑚 = 𝑀 → (𝑚‘(𝑒𝑎)) = (𝑀‘(𝑒𝑎)))
1614, 15oveq12d 6567 . . . . . 6 (𝑚 = 𝑀 → ((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))))
17 fveq1 6102 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑒) = (𝑀𝑒))
1816, 17eqeq12d 2625 . . . . 5 (𝑚 = 𝑀 → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
1918adantl 481 . . . 4 ((𝜑𝑚 = 𝑀) → (((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
2013, 19raleqbidv 3129 . . 3 ((𝜑𝑚 = 𝑀) → (∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)))
2113, 20rabeqbidv 3168 . 2 ((𝜑𝑚 = 𝑀) → {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)} = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
22 carsgval.1 . . . 4 (𝜑𝑂𝑉)
23 pwexg 4776 . . . 4 (𝑂𝑉 → 𝒫 𝑂 ∈ V)
2422, 23syl 17 . . 3 (𝜑 → 𝒫 𝑂 ∈ V)
25 fex 6394 . . 3 ((𝑀:𝒫 𝑂⟶(0[,]+∞) ∧ 𝒫 𝑂 ∈ V) → 𝑀 ∈ V)
265, 24, 25syl2anc 691 . 2 (𝜑𝑀 ∈ V)
27 rabexg 4739 . . 3 (𝒫 𝑂 ∈ V → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
2822, 23, 273syl 18 . 2 (𝜑 → {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ∈ V)
292, 21, 26, 28fvmptd 6197 1 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173   ∖ cdif 3537   ∩ cin 3539  𝒫 cpw 4108  ∪ cuni 4372   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950   +𝑒 cxad 11820  [,]cicc 12049  toCaraSigaccarsg 29690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-carsg 29691 This theorem is referenced by:  carsgcl  29693  elcarsg  29694
 Copyright terms: Public domain W3C validator