MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovassg Structured version   Visualization version   GIF version

Theorem caovassg 6730
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovassg.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
Assertion
Ref Expression
caovassg ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovassg
StepHypRef Expression
1 caovassg.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
21ralrimivvva 2955 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)))
3 oveq1 6556 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦))
43oveq1d 6564 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐹𝑦)𝐹𝑧) = ((𝐴𝐹𝑦)𝐹𝑧))
5 oveq1 6556 . . . 4 (𝑥 = 𝐴 → (𝑥𝐹(𝑦𝐹𝑧)) = (𝐴𝐹(𝑦𝐹𝑧)))
64, 5eqeq12d 2625 . . 3 (𝑥 = 𝐴 → (((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) ↔ ((𝐴𝐹𝑦)𝐹𝑧) = (𝐴𝐹(𝑦𝐹𝑧))))
7 oveq2 6557 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵))
87oveq1d 6564 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐹𝑦)𝐹𝑧) = ((𝐴𝐹𝐵)𝐹𝑧))
9 oveq1 6556 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐹𝑧) = (𝐵𝐹𝑧))
109oveq2d 6565 . . . 4 (𝑦 = 𝐵 → (𝐴𝐹(𝑦𝐹𝑧)) = (𝐴𝐹(𝐵𝐹𝑧)))
118, 10eqeq12d 2625 . . 3 (𝑦 = 𝐵 → (((𝐴𝐹𝑦)𝐹𝑧) = (𝐴𝐹(𝑦𝐹𝑧)) ↔ ((𝐴𝐹𝐵)𝐹𝑧) = (𝐴𝐹(𝐵𝐹𝑧))))
12 oveq2 6557 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐹𝐵)𝐹𝑧) = ((𝐴𝐹𝐵)𝐹𝐶))
13 oveq2 6557 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐹𝑧) = (𝐵𝐹𝐶))
1413oveq2d 6565 . . . 4 (𝑧 = 𝐶 → (𝐴𝐹(𝐵𝐹𝑧)) = (𝐴𝐹(𝐵𝐹𝐶)))
1512, 14eqeq12d 2625 . . 3 (𝑧 = 𝐶 → (((𝐴𝐹𝐵)𝐹𝑧) = (𝐴𝐹(𝐵𝐹𝑧)) ↔ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))))
166, 11, 15rspc3v 3296 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 ((𝑥𝐹𝑦)𝐹𝑧) = (𝑥𝐹(𝑦𝐹𝑧)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))))
172, 16mpan9 485 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552
This theorem is referenced by:  caovassd  6731  caovass  6732  grprinvlem  6770  grprinvd  6771  grpridd  6772  seqsplit  12696  seqcaopr  12700  seqf1olem2  12703
  Copyright terms: Public domain W3C validator