Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grprinvlem Structured version   Visualization version   GIF version

Theorem grprinvlem 6770
 Description: Lemma for grprinvd 6771. (Contributed by NM, 9-Aug-2013.)
Hypotheses
Ref Expression
grprinvlem.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grprinvlem.o (𝜑𝑂𝐵)
grprinvlem.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grprinvlem.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grprinvlem.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
grprinvlem.x ((𝜑𝜓) → 𝑋𝐵)
grprinvlem.e ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
Assertion
Ref Expression
grprinvlem ((𝜑𝜓) → 𝑋 = 𝑂)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑦,𝑋,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)   𝑋(𝑥)

Proof of Theorem grprinvlem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.x . . 3 ((𝜑𝜓) → 𝑋𝐵)
2 grprinvlem.n . . . . . 6 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
32ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
4 oveq2 6557 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 + 𝑥) = (𝑦 + 𝑧))
54eqeq1d 2612 . . . . . . 7 (𝑥 = 𝑧 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑦 + 𝑧) = 𝑂))
65rexbidv 3034 . . . . . 6 (𝑥 = 𝑧 → (∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂))
76cbvralv 3147 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
83, 7sylib 207 . . . 4 (𝜑 → ∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂)
9 oveq2 6557 . . . . . . 7 (𝑧 = 𝑋 → (𝑦 + 𝑧) = (𝑦 + 𝑋))
109eqeq1d 2612 . . . . . 6 (𝑧 = 𝑋 → ((𝑦 + 𝑧) = 𝑂 ↔ (𝑦 + 𝑋) = 𝑂))
1110rexbidv 3034 . . . . 5 (𝑧 = 𝑋 → (∃𝑦𝐵 (𝑦 + 𝑧) = 𝑂 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂))
1211rspccva 3281 . . . 4 ((∀𝑧𝐵𝑦𝐵 (𝑦 + 𝑧) = 𝑂𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
138, 12sylan 487 . . 3 ((𝜑𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
141, 13syldan 486 . 2 ((𝜑𝜓) → ∃𝑦𝐵 (𝑦 + 𝑋) = 𝑂)
15 grprinvlem.e . . . . 5 ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)
1615oveq2d 6565 . . . 4 ((𝜑𝜓) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
1716adantr 480 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = (𝑦 + 𝑋))
18 simprr 792 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + 𝑋) = 𝑂)
1918oveq1d 6564 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑂 + 𝑋))
20 simpll 786 . . . . . 6 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝜑)
21 grprinvlem.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2221caovassg 6730 . . . . . 6 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
2320, 22sylan 487 . . . . 5 ((((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
24 simprl 790 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑦𝐵)
251adantr 480 . . . . 5 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋𝐵)
2623, 24, 25, 25caovassd 6731 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → ((𝑦 + 𝑋) + 𝑋) = (𝑦 + (𝑋 + 𝑋)))
27 grprinvlem.i . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
2827ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥)
29 oveq2 6557 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦))
30 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
3129, 30eqeq12d 2625 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦))
3231cbvralv 3147 . . . . . . . 8 (∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3328, 32sylib 207 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
3433adantr 480 . . . . . 6 ((𝜑𝜓) → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
35 oveq2 6557 . . . . . . . 8 (𝑦 = 𝑋 → (𝑂 + 𝑦) = (𝑂 + 𝑋))
36 id 22 . . . . . . . 8 (𝑦 = 𝑋𝑦 = 𝑋)
3735, 36eqeq12d 2625 . . . . . . 7 (𝑦 = 𝑋 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑋) = 𝑋))
3837rspcv 3278 . . . . . 6 (𝑋𝐵 → (∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦 → (𝑂 + 𝑋) = 𝑋))
391, 34, 38sylc 63 . . . . 5 ((𝜑𝜓) → (𝑂 + 𝑋) = 𝑋)
4039adantr 480 . . . 4 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑂 + 𝑋) = 𝑋)
4119, 26, 403eqtr3d 2652 . . 3 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → (𝑦 + (𝑋 + 𝑋)) = 𝑋)
4217, 41, 183eqtr3d 2652 . 2 (((𝜑𝜓) ∧ (𝑦𝐵 ∧ (𝑦 + 𝑋) = 𝑂)) → 𝑋 = 𝑂)
4314, 42rexlimddv 3017 1 ((𝜑𝜓) → 𝑋 = 𝑂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552 This theorem is referenced by:  grprinvd  6771
 Copyright terms: Public domain W3C validator