Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnhl2 Structured version   Visualization version   GIF version

Theorem btwnhl2 25308
 Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
btwnhl1.1 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
btwnhl1.2 (𝜑𝐴𝐵)
btwnhl2.3 (𝜑𝐶𝐵)
Assertion
Ref Expression
btwnhl2 (𝜑𝐶(𝐾𝐵)𝐴)

Proof of Theorem btwnhl2
StepHypRef Expression
1 btwnhl2.3 . . 3 (𝜑𝐶𝐵)
2 btwnhl1.2 . . 3 (𝜑𝐴𝐵)
3 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
4 eqid 2610 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
5 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
6 hlln.1 . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 ishlg.a . . . . 5 (𝜑𝐴𝑃)
8 ishlg.c . . . . 5 (𝜑𝐶𝑃)
9 ishlg.b . . . . 5 (𝜑𝐵𝑃)
10 btwnhl1.1 . . . . 5 (𝜑𝐶 ∈ (𝐴𝐼𝐵))
113, 4, 5, 6, 7, 8, 9, 10tgbtwncom 25183 . . . 4 (𝜑𝐶 ∈ (𝐵𝐼𝐴))
1211orcd 406 . . 3 (𝜑 → (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))
131, 2, 123jca 1235 . 2 (𝜑 → (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))
14 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
153, 5, 14, 8, 7, 9, 6ishlg 25297 . 2 (𝜑 → (𝐶(𝐾𝐵)𝐴 ↔ (𝐶𝐵𝐴𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))))
1613, 15mpbird 246 1 (𝜑𝐶(𝐾𝐵)𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  hlGchlg 25295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-hlg 25296 This theorem is referenced by:  outpasch  25447  hlpasch  25448
 Copyright terms: Public domain W3C validator