MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  boxcutc Structured version   Visualization version   GIF version

Theorem boxcutc 7837
Description: The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
boxcutc ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) → (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) = X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem boxcutc
Dummy variables 𝑙 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3694 . . 3 (𝑧 ∈ (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) → 𝑧X𝑘𝐴 𝐵)
21adantl 481 . 2 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧 ∈ (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵))) → 𝑧X𝑘𝐴 𝐵)
3 sseq1 3589 . . . . . 6 ((𝐵𝐶) = if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) → ((𝐵𝐶) ⊆ 𝐵 ↔ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ 𝐵))
4 sseq1 3589 . . . . . 6 (𝐵 = if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) → (𝐵𝐵 ↔ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ 𝐵))
5 difss 3699 . . . . . 6 (𝐵𝐶) ⊆ 𝐵
6 ssid 3587 . . . . . 6 𝐵𝐵
73, 4, 5, 6keephyp 4102 . . . . 5 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ 𝐵
87rgenw 2908 . . . 4 𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ 𝐵
9 ss2ixp 7807 . . . 4 (∀𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ 𝐵X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ X𝑘𝐴 𝐵)
108, 9mp1i 13 . . 3 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) → X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ⊆ X𝑘𝐴 𝐵)
1110sselda 3568 . 2 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)) → 𝑧X𝑘𝐴 𝐵)
12 ixpfn 7800 . . . . . . . . 9 (𝑧X𝑘𝐴 𝐵𝑧 Fn 𝐴)
1312adantl 481 . . . . . . . 8 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → 𝑧 Fn 𝐴)
1413biantrurd 528 . . . . . . 7 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵))))
15 vex 3176 . . . . . . . 8 𝑧 ∈ V
1615elixp 7801 . . . . . . 7 (𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵)))
1714, 16syl6rbbr 278 . . . . . 6 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵)))
1817notbid 307 . . . . 5 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ¬ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵)))
19 rexnal 2978 . . . . . 6 (∃𝑘𝐴 ¬ (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ¬ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵))
20 eleq2 2677 . . . . . . . . . 10 ((𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶) = if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵) → ((𝑧𝑚) ∈ (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶) ↔ (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)))
21 eleq2 2677 . . . . . . . . . 10 (𝑚 / 𝑘𝐵 = if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵) → ((𝑧𝑚) ∈ 𝑚 / 𝑘𝐵 ↔ (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)))
22 eleq2 2677 . . . . . . . . . . . . . . . . . . 19 (𝑙 / 𝑘𝐶 = if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) → ((𝑧𝑙) ∈ 𝑙 / 𝑘𝐶 ↔ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)))
23 eleq2 2677 . . . . . . . . . . . . . . . . . . 19 (𝑙 / 𝑘𝐵 = if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) → ((𝑧𝑙) ∈ 𝑙 / 𝑘𝐵 ↔ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)))
24 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) → 𝑋𝐴)
2515elixp 7801 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧X𝑘𝐴 𝐵 ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ 𝐵))
2625simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧X𝑘𝐴 𝐵 → ∀𝑘𝐴 (𝑧𝑘) ∈ 𝐵)
27 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑙(𝑧𝑘) ∈ 𝐵
28 nfcsb1v 3515 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑘𝑙 / 𝑘𝐵
2928nfel2 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑘(𝑧𝑙) ∈ 𝑙 / 𝑘𝐵
30 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑙 → (𝑧𝑘) = (𝑧𝑙))
31 csbeq1a 3508 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
3230, 31eleq12d 2682 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑙 → ((𝑧𝑘) ∈ 𝐵 ↔ (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵))
3327, 29, 32cbvral 3143 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑘𝐴 (𝑧𝑘) ∈ 𝐵 ↔ ∀𝑙𝐴 (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵)
3426, 33sylib 207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧X𝑘𝐴 𝐵 → ∀𝑙𝐴 (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵)
35 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑙 = 𝑋 → (𝑧𝑙) = (𝑧𝑋))
36 csbeq1 3502 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑙 = 𝑋𝑙 / 𝑘𝐵 = 𝑋 / 𝑘𝐵)
3735, 36eleq12d 2682 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑙 = 𝑋 → ((𝑧𝑙) ∈ 𝑙 / 𝑘𝐵 ↔ (𝑧𝑋) ∈ 𝑋 / 𝑘𝐵))
3837rspcva 3280 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝐴 ∧ ∀𝑙𝐴 (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵) → (𝑧𝑋) ∈ 𝑋 / 𝑘𝐵)
3924, 34, 38syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (𝑧𝑋) ∈ 𝑋 / 𝑘𝐵)
40 neldif 3697 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧𝑋) ∈ 𝑋 / 𝑘𝐵 ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) → (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶)
4139, 40sylan 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) → (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶)
4241adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) ∧ 𝑙𝐴) → (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶)
43 csbeq1 3502 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑋𝑙 / 𝑘𝐶 = 𝑋 / 𝑘𝐶)
4435, 43eleq12d 2682 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑋 → ((𝑧𝑙) ∈ 𝑙 / 𝑘𝐶 ↔ (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶))
4542, 44syl5ibrcom 236 . . . . . . . . . . . . . . . . . . . 20 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) ∧ 𝑙𝐴) → (𝑙 = 𝑋 → (𝑧𝑙) ∈ 𝑙 / 𝑘𝐶))
4645imp 444 . . . . . . . . . . . . . . . . . . 19 ((((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) ∧ 𝑙𝐴) ∧ 𝑙 = 𝑋) → (𝑧𝑙) ∈ 𝑙 / 𝑘𝐶)
4734ad2antlr 759 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) → ∀𝑙𝐴 (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵)
4847r19.21bi 2916 . . . . . . . . . . . . . . . . . . . 20 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) ∧ 𝑙𝐴) → (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵)
4948adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) ∧ 𝑙𝐴) ∧ ¬ 𝑙 = 𝑋) → (𝑧𝑙) ∈ 𝑙 / 𝑘𝐵)
5022, 23, 46, 49ifbothda 4073 . . . . . . . . . . . . . . . . . 18 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) ∧ 𝑙𝐴) → (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
5150ralrimiva 2949 . . . . . . . . . . . . . . . . 17 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) → ∀𝑙𝐴 (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
52 dfral2 2977 . . . . . . . . . . . . . . . . 17 (∀𝑙𝐴 (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) ↔ ¬ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
5351, 52sylib 207 . . . . . . . . . . . . . . . 16 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)) → ¬ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
5453ex 449 . . . . . . . . . . . . . . 15 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (¬ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶) → ¬ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)))
5554con4d 113 . . . . . . . . . . . . . 14 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) → (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)))
5655imp 444 . . . . . . . . . . . . 13 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) → (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶))
5756adantr 480 . . . . . . . . . . . 12 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) ∧ 𝑚𝐴) → (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶))
58 fveq2 6103 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → (𝑧𝑚) = (𝑧𝑋))
59 csbeq1 3502 . . . . . . . . . . . . . 14 (𝑚 = 𝑋𝑚 / 𝑘𝐵 = 𝑋 / 𝑘𝐵)
60 csbeq1 3502 . . . . . . . . . . . . . 14 (𝑚 = 𝑋𝑚 / 𝑘𝐶 = 𝑋 / 𝑘𝐶)
6159, 60difeq12d 3691 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶) = (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶))
6258, 61eleq12d 2682 . . . . . . . . . . . 12 (𝑚 = 𝑋 → ((𝑧𝑚) ∈ (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶) ↔ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)))
6357, 62syl5ibrcom 236 . . . . . . . . . . 11 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) ∧ 𝑚𝐴) → (𝑚 = 𝑋 → (𝑧𝑚) ∈ (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶)))
6463imp 444 . . . . . . . . . 10 ((((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) ∧ 𝑚𝐴) ∧ 𝑚 = 𝑋) → (𝑧𝑚) ∈ (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶))
65 nfv 1830 . . . . . . . . . . . . . . 15 𝑚(𝑧𝑘) ∈ 𝐵
66 nfcsb1v 3515 . . . . . . . . . . . . . . . 16 𝑘𝑚 / 𝑘𝐵
6766nfel2 2767 . . . . . . . . . . . . . . 15 𝑘(𝑧𝑚) ∈ 𝑚 / 𝑘𝐵
68 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → (𝑧𝑘) = (𝑧𝑚))
69 csbeq1a 3508 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
7068, 69eleq12d 2682 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → ((𝑧𝑘) ∈ 𝐵 ↔ (𝑧𝑚) ∈ 𝑚 / 𝑘𝐵))
7165, 67, 70cbvral 3143 . . . . . . . . . . . . . 14 (∀𝑘𝐴 (𝑧𝑘) ∈ 𝐵 ↔ ∀𝑚𝐴 (𝑧𝑚) ∈ 𝑚 / 𝑘𝐵)
7226, 71sylib 207 . . . . . . . . . . . . 13 (𝑧X𝑘𝐴 𝐵 → ∀𝑚𝐴 (𝑧𝑚) ∈ 𝑚 / 𝑘𝐵)
7372ad2antlr 759 . . . . . . . . . . . 12 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) → ∀𝑚𝐴 (𝑧𝑚) ∈ 𝑚 / 𝑘𝐵)
7473r19.21bi 2916 . . . . . . . . . . 11 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) ∧ 𝑚𝐴) → (𝑧𝑚) ∈ 𝑚 / 𝑘𝐵)
7574adantr 480 . . . . . . . . . 10 ((((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) ∧ 𝑚𝐴) ∧ ¬ 𝑚 = 𝑋) → (𝑧𝑚) ∈ 𝑚 / 𝑘𝐵)
7620, 21, 64, 75ifbothda 4073 . . . . . . . . 9 (((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) ∧ 𝑚𝐴) → (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵))
7776ralrimiva 2949 . . . . . . . 8 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)) → ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵))
78 simplll 794 . . . . . . . . 9 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)) → 𝑋𝐴)
79 simpll 786 . . . . . . . . . . 11 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → 𝑋𝐴)
80 iftrue 4042 . . . . . . . . . . . . . 14 (𝑚 = 𝑋 → if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵) = (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶))
8180, 61eqtrd 2644 . . . . . . . . . . . . 13 (𝑚 = 𝑋 → if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵) = (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶))
8258, 81eleq12d 2682 . . . . . . . . . . . 12 (𝑚 = 𝑋 → ((𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵) ↔ (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶)))
8382rspcva 3280 . . . . . . . . . . 11 ((𝑋𝐴 ∧ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)) → (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶))
8479, 83sylan 487 . . . . . . . . . 10 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)) → (𝑧𝑋) ∈ (𝑋 / 𝑘𝐵𝑋 / 𝑘𝐶))
8584eldifbd 3553 . . . . . . . . 9 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)) → ¬ (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶)
86 iftrue 4042 . . . . . . . . . . . . 13 (𝑙 = 𝑋 → if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) = 𝑙 / 𝑘𝐶)
8786, 43eqtrd 2644 . . . . . . . . . . . 12 (𝑙 = 𝑋 → if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) = 𝑋 / 𝑘𝐶)
8835, 87eleq12d 2682 . . . . . . . . . . 11 (𝑙 = 𝑋 → ((𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) ↔ (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶))
8988notbid 307 . . . . . . . . . 10 (𝑙 = 𝑋 → (¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) ↔ ¬ (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶))
9089rspcev 3282 . . . . . . . . 9 ((𝑋𝐴 ∧ ¬ (𝑧𝑋) ∈ 𝑋 / 𝑘𝐶) → ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
9178, 85, 90syl2anc 691 . . . . . . . 8 ((((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) ∧ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)) → ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
9277, 91impbida 873 . . . . . . 7 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵) ↔ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)))
93 nfv 1830 . . . . . . . 8 𝑙 ¬ (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵)
94 nfv 1830 . . . . . . . . . . 11 𝑘 𝑙 = 𝑋
95 nfcsb1v 3515 . . . . . . . . . . 11 𝑘𝑙 / 𝑘𝐶
9694, 95, 28nfif 4065 . . . . . . . . . 10 𝑘if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)
9796nfel2 2767 . . . . . . . . 9 𝑘(𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)
9897nfn 1768 . . . . . . . 8 𝑘 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)
99 eqeq1 2614 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑘 = 𝑋𝑙 = 𝑋))
100 csbeq1a 3508 . . . . . . . . . . 11 (𝑘 = 𝑙𝐶 = 𝑙 / 𝑘𝐶)
10199, 100, 31ifbieq12d 4063 . . . . . . . . . 10 (𝑘 = 𝑙 → if(𝑘 = 𝑋, 𝐶, 𝐵) = if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
10230, 101eleq12d 2682 . . . . . . . . 9 (𝑘 = 𝑙 → ((𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)))
103102notbid 307 . . . . . . . 8 (𝑘 = 𝑙 → (¬ (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵)))
10493, 98, 103cbvrex 3144 . . . . . . 7 (∃𝑘𝐴 ¬ (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ∃𝑙𝐴 ¬ (𝑧𝑙) ∈ if(𝑙 = 𝑋, 𝑙 / 𝑘𝐶, 𝑙 / 𝑘𝐵))
105 nfv 1830 . . . . . . . 8 𝑚(𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)
106 nfv 1830 . . . . . . . . . 10 𝑘 𝑚 = 𝑋
107 nfcsb1v 3515 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝐶
10866, 107nfdif 3693 . . . . . . . . . 10 𝑘(𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶)
109106, 108, 66nfif 4065 . . . . . . . . 9 𝑘if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)
110109nfel2 2767 . . . . . . . 8 𝑘(𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)
111 eqeq1 2614 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑘 = 𝑋𝑚 = 𝑋))
112 csbeq1a 3508 . . . . . . . . . . 11 (𝑘 = 𝑚𝐶 = 𝑚 / 𝑘𝐶)
11369, 112difeq12d 3691 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐵𝐶) = (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶))
114111, 113, 69ifbieq12d 4063 . . . . . . . . 9 (𝑘 = 𝑚 → if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) = if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵))
11568, 114eleq12d 2682 . . . . . . . 8 (𝑘 = 𝑚 → ((𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ↔ (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵)))
116105, 110, 115cbvral 3143 . . . . . . 7 (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ↔ ∀𝑚𝐴 (𝑧𝑚) ∈ if(𝑚 = 𝑋, (𝑚 / 𝑘𝐵𝑚 / 𝑘𝐶), 𝑚 / 𝑘𝐵))
11792, 104, 1163bitr4g 302 . . . . . 6 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (∃𝑘𝐴 ¬ (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)))
11819, 117syl5bbr 273 . . . . 5 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (¬ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)))
11918, 118bitrd 267 . . . 4 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)))
120 ibar 524 . . . . 5 (𝑧X𝑘𝐴 𝐵 → (¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ (𝑧X𝑘𝐴 𝐵 ∧ ¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵))))
121120adantl 481 . . . 4 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵) ↔ (𝑧X𝑘𝐴 𝐵 ∧ ¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵))))
12213biantrurd 528 . . . 4 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵))))
123119, 121, 1223bitr3d 297 . . 3 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → ((𝑧X𝑘𝐴 𝐵 ∧ ¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵))))
124 eldif 3550 . . 3 (𝑧 ∈ (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) ↔ (𝑧X𝑘𝐴 𝐵 ∧ ¬ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)))
12515elixp 7801 . . 3 (𝑧X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑧𝑘) ∈ if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)))
126123, 124, 1253bitr4g 302 . 2 (((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) ∧ 𝑧X𝑘𝐴 𝐵) → (𝑧 ∈ (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) ↔ 𝑧X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵)))
1272, 11, 126eqrdav 2609 1 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) → (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) = X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  csb 3499  cdif 3537  wss 3540  ifcif 4036   Fn wfn 5799  cfv 5804  Xcixp 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ixp 7795
This theorem is referenced by:  ptcld  21226
  Copyright terms: Public domain W3C validator