MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Structured version   Visualization version   GIF version

Theorem ptcld 21226
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a (𝜑𝐴𝑉)
ptcld.f (𝜑𝐹:𝐴⟶Top)
ptcld.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘(𝐹𝑘)))
Assertion
Ref Expression
ptcld (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t𝐹)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem ptcld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘(𝐹𝑘)))
2 eqid 2610 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
32cldss 20643 . . . . 5 (𝐶 ∈ (Clsd‘(𝐹𝑘)) → 𝐶 (𝐹𝑘))
41, 3syl 17 . . . 4 ((𝜑𝑘𝐴) → 𝐶 (𝐹𝑘))
54ralrimiva 2949 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 (𝐹𝑘))
6 boxriin 7836 . . 3 (∀𝑘𝐴 𝐶 (𝐹𝑘) → X𝑘𝐴 𝐶 = (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
75, 6syl 17 . 2 (𝜑X𝑘𝐴 𝐶 = (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
8 ptcld.a . . . . 5 (𝜑𝐴𝑉)
9 ptcld.f . . . . 5 (𝜑𝐹:𝐴⟶Top)
10 eqid 2610 . . . . . 6 (∏t𝐹) = (∏t𝐹)
1110ptuni 21207 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
128, 9, 11syl2anc 691 . . . 4 (𝜑X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1312ineq1d 3775 . . 3 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
14 pttop 21195 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
158, 9, 14syl2anc 691 . . . 4 (𝜑 → (∏t𝐹) ∈ Top)
16 sseq1 3589 . . . . . . . . . . 11 (𝐶 = if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) → (𝐶 (𝐹𝑘) ↔ if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘)))
17 sseq1 3589 . . . . . . . . . . 11 ( (𝐹𝑘) = if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) → ( (𝐹𝑘) ⊆ (𝐹𝑘) ↔ if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘)))
18 simpl 472 . . . . . . . . . . 11 ((𝐶 (𝐹𝑘) ∧ 𝑘 = 𝑥) → 𝐶 (𝐹𝑘))
19 ssid 3587 . . . . . . . . . . . 12 (𝐹𝑘) ⊆ (𝐹𝑘)
2019a1i 11 . . . . . . . . . . 11 ((𝐶 (𝐹𝑘) ∧ ¬ 𝑘 = 𝑥) → (𝐹𝑘) ⊆ (𝐹𝑘))
2116, 17, 18, 20ifbothda 4073 . . . . . . . . . 10 (𝐶 (𝐹𝑘) → if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘))
2221ralimi 2936 . . . . . . . . 9 (∀𝑘𝐴 𝐶 (𝐹𝑘) → ∀𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘))
23 ss2ixp 7807 . . . . . . . . 9 (∀𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
245, 22, 233syl 18 . . . . . . . 8 (𝜑X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
2524adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
2612adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
2725, 26sseqtrd 3604 . . . . . 6 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹))
2812eqcomd 2616 . . . . . . . . . 10 (𝜑 (∏t𝐹) = X𝑘𝐴 (𝐹𝑘))
2928difeq1d 3689 . . . . . . . . 9 (𝜑 → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
3029adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
31 simpr 476 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
325adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑘𝐴 𝐶 (𝐹𝑘))
33 boxcutc 7837 . . . . . . . . 9 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐶 (𝐹𝑘)) → (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)))
3431, 32, 33syl2anc 691 . . . . . . . 8 ((𝜑𝑥𝐴) → (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)))
35 ixpeq2 7808 . . . . . . . . . 10 (∀𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
36 fveq2 6103 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3736unieqd 4382 . . . . . . . . . . . . 13 (𝑘 = 𝑥 (𝐹𝑘) = (𝐹𝑥))
38 csbeq1a 3508 . . . . . . . . . . . . 13 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
3937, 38difeq12d 3691 . . . . . . . . . . . 12 (𝑘 = 𝑥 → ( (𝐹𝑘) ∖ 𝐶) = ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶))
4039adantl 481 . . . . . . . . . . 11 ((𝑘𝐴𝑘 = 𝑥) → ( (𝐹𝑘) ∖ 𝐶) = ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶))
4140ifeq1da 4066 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
4235, 41mprg 2910 . . . . . . . . 9 X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘))
4342a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
4430, 34, 433eqtrd 2648 . . . . . . 7 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
458adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐴𝑉)
469adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶Top)
471ralrimiva 2949 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (Clsd‘(𝐹𝑘)))
48 nfv 1830 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (Clsd‘(𝐹𝑘))
49 nfcsb1v 3515 . . . . . . . . . . . . 13 𝑘𝑥 / 𝑘𝐶
5049nfel1 2765 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥))
5136fveq2d 6107 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (Clsd‘(𝐹𝑘)) = (Clsd‘(𝐹𝑥)))
5238, 51eleq12d 2682 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝐶 ∈ (Clsd‘(𝐹𝑘)) ↔ 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥))))
5348, 50, 52cbvral 3143 . . . . . . . . . . 11 (∀𝑘𝐴 𝐶 ∈ (Clsd‘(𝐹𝑘)) ↔ ∀𝑥𝐴 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
5447, 53sylib 207 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
5554r19.21bi 2916 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
56 eqid 2610 . . . . . . . . . 10 (𝐹𝑥) = (𝐹𝑥)
5756cldopn 20645 . . . . . . . . 9 (𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)) → ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶) ∈ (𝐹𝑥))
5855, 57syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶) ∈ (𝐹𝑥))
5945, 46, 58ptopn2 21197 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)) ∈ (∏t𝐹))
6044, 59eqeltrd 2688 . . . . . 6 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))
61 eqid 2610 . . . . . . . . 9 (∏t𝐹) = (∏t𝐹)
6261iscld 20641 . . . . . . . 8 ((∏t𝐹) ∈ Top → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6315, 62syl 17 . . . . . . 7 (𝜑 → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6463adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6527, 60, 64mpbir2and 959 . . . . 5 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)))
6665ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)))
6761riincld 20658 . . . 4 (((∏t𝐹) ∈ Top ∧ ∀𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹))) → ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
6815, 66, 67syl2anc 691 . . 3 (𝜑 → ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
6913, 68eqeltrd 2688 . 2 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
707, 69eqeltrd 2688 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  csb 3499  cdif 3537  cin 3539  wss 3540  ifcif 4036   cuni 4372   ciin 4456  wf 5800  cfv 5804  Xcixp 7794  tcpt 15922  Topctop 20517  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ixp 7795  df-en 7842  df-fin 7845  df-fi 8200  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-cld 20633
This theorem is referenced by:  ptcldmpt  21227
  Copyright terms: Public domain W3C validator