Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglinv Structured version   Visualization version   GIF version

Theorem bj-snglinv 32153
 Description: Inverse of singletonization. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglinv 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-snglinv
StepHypRef Expression
1 bj-snglc 32150 . 2 (𝑥𝐴 ↔ {𝑥} ∈ sngl 𝐴)
21abbi2i 2725 1 𝐴 = {𝑥 ∣ {𝑥} ∈ sngl 𝐴}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  {cab 2596  {csn 4125  sngl bj-csngl 32146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128  df-bj-sngl 32147 This theorem is referenced by:  bj-snglex  32154  bj-taginv  32167
 Copyright terms: Public domain W3C validator