Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglex Structured version   Visualization version   GIF version

Theorem bj-snglex 32154
Description: A class is a set if and only if its singletonization is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglex (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)

Proof of Theorem bj-snglex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isset 3180 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
2 pweq 4111 . . . . 5 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
32eximi 1752 . . . 4 (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝒫 𝑥 = 𝒫 𝐴)
4 bj-snglss 32151 . . . . . 6 sngl 𝐴 ⊆ 𝒫 𝐴
5 sseq2 3590 . . . . . 6 (𝒫 𝑥 = 𝒫 𝐴 → (sngl 𝐴 ⊆ 𝒫 𝑥 ↔ sngl 𝐴 ⊆ 𝒫 𝐴))
64, 5mpbiri 247 . . . . 5 (𝒫 𝑥 = 𝒫 𝐴 → sngl 𝐴 ⊆ 𝒫 𝑥)
76eximi 1752 . . . 4 (∃𝑥𝒫 𝑥 = 𝒫 𝐴 → ∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥)
8 vpwex 4775 . . . . . 6 𝒫 𝑥 ∈ V
98ssex 4730 . . . . 5 (sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V)
109exlimiv 1845 . . . 4 (∃𝑥sngl 𝐴 ⊆ 𝒫 𝑥 → sngl 𝐴 ∈ V)
113, 7, 103syl 18 . . 3 (∃𝑥 𝑥 = 𝐴 → sngl 𝐴 ∈ V)
121, 11sylbi 206 . 2 (𝐴 ∈ V → sngl 𝐴 ∈ V)
13 bj-snglinv 32153 . . 3 𝐴 = {𝑦 ∣ {𝑦} ∈ sngl 𝐴}
14 bj-snsetex 32144 . . 3 (sngl 𝐴 ∈ V → {𝑦 ∣ {𝑦} ∈ sngl 𝐴} ∈ V)
1513, 14syl5eqel 2692 . 2 (sngl 𝐴 ∈ V → 𝐴 ∈ V)
1612, 15impbii 198 1 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wex 1695  wcel 1977  {cab 2596  Vcvv 3173  wss 3540  𝒫 cpw 4108  {csn 4125  sngl bj-csngl 32146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-bj-sngl 32147
This theorem is referenced by:  bj-tagex  32168
  Copyright terms: Public domain W3C validator