Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-diagval Structured version   Visualization version   GIF version

Theorem bj-diagval 32267
Description: Value of the diagonal. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-diagval (𝐴𝑉 → (Diag‘𝐴) = ( I ∩ (𝐴 × 𝐴)))

Proof of Theorem bj-diagval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝑉𝐴 ∈ V)
2 incom 3767 . . 3 ((𝐴 × 𝐴) ∩ I ) = ( I ∩ (𝐴 × 𝐴))
3 sqxpexg 6861 . . . 4 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
4 inex1g 4729 . . . 4 ((𝐴 × 𝐴) ∈ V → ((𝐴 × 𝐴) ∩ I ) ∈ V)
53, 4syl 17 . . 3 (𝐴𝑉 → ((𝐴 × 𝐴) ∩ I ) ∈ V)
62, 5syl5eqelr 2693 . 2 (𝐴𝑉 → ( I ∩ (𝐴 × 𝐴)) ∈ V)
7 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
87sqxpeqd 5065 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝑥) = (𝐴 × 𝐴))
98ineq2d 3776 . . 3 (𝑥 = 𝐴 → ( I ∩ (𝑥 × 𝑥)) = ( I ∩ (𝐴 × 𝐴)))
10 df-bj-diag 32266 . . 3 Diag = (𝑥 ∈ V ↦ ( I ∩ (𝑥 × 𝑥)))
119, 10fvmptg 6189 . 2 ((𝐴 ∈ V ∧ ( I ∩ (𝐴 × 𝐴)) ∈ V) → (Diag‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
121, 6, 11syl2anc 691 1 (𝐴𝑉 → (Diag‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539   I cid 4948   × cxp 5036  cfv 5804  Diagcdiag2 32265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-bj-diag 32266
This theorem is referenced by:  bj-eldiag  32268  bj-eldiag2  32269
  Copyright terms: Public domain W3C validator