MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axcontlem3 Structured version   Visualization version   GIF version

Theorem axcontlem3 25646
Description: Lemma for axcont 25656. Given the separation assumption, 𝐵 is a subset of 𝐷. (Contributed by Scott Fenton, 18-Jun-2013.)
Hypothesis
Ref Expression
axcontlem3.1 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
Assertion
Ref Expression
axcontlem3 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
Distinct variable groups:   𝐴,𝑝,𝑥   𝐵,𝑝,𝑥,𝑦   𝑁,𝑝,𝑥,𝑦   𝑈,𝑝,𝑥,𝑦   𝑍,𝑝,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥,𝑦,𝑝)

Proof of Theorem axcontlem3
StepHypRef Expression
1 simplr2 1097 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵 ⊆ (𝔼‘𝑁))
2 simpr2 1061 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝑈𝐴)
32anim1i 590 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) ∧ 𝑝𝐵) → (𝑈𝐴𝑝𝐵))
4 simplr3 1098 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
54adantr 480 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) ∧ 𝑝𝐵) → ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)
6 breq1 4586 . . . . . 6 (𝑥 = 𝑈 → (𝑥 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑈 Btwn ⟨𝑍, 𝑦⟩))
7 opeq2 4341 . . . . . . 7 (𝑦 = 𝑝 → ⟨𝑍, 𝑦⟩ = ⟨𝑍, 𝑝⟩)
87breq2d 4595 . . . . . 6 (𝑦 = 𝑝 → (𝑈 Btwn ⟨𝑍, 𝑦⟩ ↔ 𝑈 Btwn ⟨𝑍, 𝑝⟩))
96, 8rspc2v 3293 . . . . 5 ((𝑈𝐴𝑝𝐵) → (∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩ → 𝑈 Btwn ⟨𝑍, 𝑝⟩))
103, 5, 9sylc 63 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) ∧ 𝑝𝐵) → 𝑈 Btwn ⟨𝑍, 𝑝⟩)
1110orcd 406 . . 3 ((((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) ∧ 𝑝𝐵) → (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩))
1211ralrimiva 2949 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → ∀𝑝𝐵 (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩))
13 axcontlem3.1 . . . 4 𝐷 = {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)}
1413sseq2i 3593 . . 3 (𝐵𝐷𝐵 ⊆ {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)})
15 ssrab 3643 . . 3 (𝐵 ⊆ {𝑝 ∈ (𝔼‘𝑁) ∣ (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)} ↔ (𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑝𝐵 (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)))
1614, 15bitri 263 . 2 (𝐵𝐷 ↔ (𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑝𝐵 (𝑈 Btwn ⟨𝑍, 𝑝⟩ ∨ 𝑝 Btwn ⟨𝑍, 𝑈⟩)))
171, 12, 16sylanbrc 695 1 (((𝑁 ∈ ℕ ∧ (𝐴 ⊆ (𝔼‘𝑁) ∧ 𝐵 ⊆ (𝔼‘𝑁) ∧ ∀𝑥𝐴𝑦𝐵 𝑥 Btwn ⟨𝑍, 𝑦⟩)) ∧ (𝑍 ∈ (𝔼‘𝑁) ∧ 𝑈𝐴𝑍𝑈)) → 𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  wss 3540  cop 4131   class class class wbr 4583  cfv 5804  cn 10897  𝔼cee 25568   Btwn cbtwn 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584
This theorem is referenced by:  axcontlem9  25652  axcontlem10  25653
  Copyright terms: Public domain W3C validator