Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sb5ndALT Structured version   Visualization version   GIF version

Theorem 2sb5ndALT 38190
Description: Equivalence for double substitution 2sb5 2431 without distinct 𝑥, 𝑦 requirement. 2sb5nd 37797 is derived from 2sb5ndVD 38168. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 38168. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2sb5ndALT ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem 2sb5ndALT
StepHypRef Expression
1 ax6e2ndeq 37796 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
2 anabs5 847 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3 2pm13.193 37789 . . . . . . . . 9 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
43exbii 1764 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
5 hbs1 2424 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
6 id 22 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
7 axc11 2302 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
86, 7syl 17 . . . . . . . . . . . 12 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
9 pm3.33 607 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ∧ (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
105, 8, 9sylancr 694 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
11 hbs1 2424 . . . . . . . . . . . . . 14 ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
1211sbt 2407 . . . . . . . . . . . . 13 [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
13 sbi1 2380 . . . . . . . . . . . . 13 ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑))
1412, 13ax-mp 5 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑)
15 id 22 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
16 axc11n 2295 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
1716con3i 149 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1815, 17syl 17 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
19 sbal2 2449 . . . . . . . . . . . . 13 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2018, 19syl 17 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21 imbi2 337 . . . . . . . . . . . . 13 (([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
2221biimpac 502 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ∧ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2314, 20, 22sylancr 694 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2410, 23pm2.61i 175 . . . . . . . . . 10 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2524nf5i 2011 . . . . . . . . 9 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
262519.41 2090 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
274, 26bitr3i 265 . . . . . . 7 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2827exbii 1764 . . . . . 6 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
29 nfs1v 2425 . . . . . . 7 𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
302919.41 2090 . . . . . 6 (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3128, 30bitr2i 264 . . . . 5 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3231anbi2i 726 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
332, 32bitr3i 265 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
34 pm5.32 666 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
3533, 34mpbir 220 . 2 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
361, 35sylbi 206 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wal 1473   = wceq 1475  wex 1695  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-ne 2782  df-v 3175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator