Proof of Theorem ska2
Step | Hyp | Ref
| Expression |
1 | | dfnb 95 |
. . 3
(a ≡ b)⊥ = ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
2 | | dfnb 95 |
. . . 4
(b ≡ c)⊥ = ((b ∪ c) ∩
(b⊥ ∪ c⊥ )) |
3 | | dfb 94 |
. . . 4
(a ≡ c) = ((a ∩
c) ∪ (a⊥ ∩ c⊥ )) |
4 | 2, 3 | 2or 72 |
. . 3
((b ≡ c)⊥ ∪ (a ≡ c)) =
(((b ∪ c) ∩ (b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
5 | 1, 4 | 2or 72 |
. 2
((a ≡ b)⊥ ∪ ((b ≡ c)⊥ ∪ (a ≡ c))) =
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) |
6 | | ax-a3 32 |
. . . 4
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) |
7 | 6 | ax-r1 35 |
. . 3
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) = ((((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
8 | | id 59 |
. . . 4
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = ((((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
9 | | le1 146 |
. . . . 5
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ≤ 1 |
10 | | ax-a2 31 |
. . . . . . . . . 10
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) |
11 | | or12 80 |
. . . . . . . . . . 11
(((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) = (((a ∪ b) ∩
a⊥ ) ∪ (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) |
12 | | or12 80 |
. . . . . . . . . . . . 13
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) = ((a ∩ c) ∪
(((a ∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) |
13 | | or12 80 |
. . . . . . . . . . . . . . . 16
(((a ∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) |
14 | | ax-a3 32 |
. . . . . . . . . . . . . . . . 17
(((a⊥ ∩
c⊥ ) ∪ b⊥ ) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ (b⊥ ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) |
15 | | orordi 112 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∪
(((a ∪ b) ∩ a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))) |
16 | 15 | lor 70 |
. . . . . . . . . . . . . . . . 17
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) |
17 | 14, 16 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(((a⊥ ∩
c⊥ ) ∪ b⊥ ) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) |
18 | 13, 17 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(((a ∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) |
19 | 18 | lor 70 |
. . . . . . . . . . . . . 14
((a ∩ c) ∪ (((a
∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) = ((a ∩ c) ∪
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))))) |
20 | | or12 80 |
. . . . . . . . . . . . . . . 16
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = ((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) |
21 | | le1 146 |
. . . . . . . . . . . . . . . . 17
((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) ≤ 1 |
22 | | df-t 41 |
. . . . . . . . . . . . . . . . . . . 20
1 = ((a ∩ c) ∪ (a
∩ c)⊥
) |
23 | | oran3 93 |
. . . . . . . . . . . . . . . . . . . . . 22
(a⊥ ∪ c⊥ ) = (a ∩ c)⊥ |
24 | 23 | lor 70 |
. . . . . . . . . . . . . . . . . . . . 21
((a ∩ c) ∪ (a⊥ ∪ c⊥ )) = ((a ∩ c) ∪
(a ∩ c)⊥ ) |
25 | 24 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . 20
((a ∩ c) ∪ (a
∩ c)⊥ ) = ((a ∩ c) ∪
(a⊥ ∪ c⊥ )) |
26 | 22, 25 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . 19
1 = ((a ∩ c) ∪ (a⊥ ∪ c⊥ )) |
27 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . 21
a⊥ ≤ (b⊥ ∪ a⊥ ) |
28 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . 21
c⊥ ≤ (b⊥ ∪ c⊥ ) |
29 | 27, 28 | le2or 168 |
. . . . . . . . . . . . . . . . . . . 20
(a⊥ ∪ c⊥ ) ≤ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )) |
30 | 29 | lelor 166 |
. . . . . . . . . . . . . . . . . . 19
((a ∩ c) ∪ (a⊥ ∪ c⊥ )) ≤ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) |
31 | 26, 30 | bltr 138 |
. . . . . . . . . . . . . . . . . 18
1 ≤ ((a ∩ c) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) |
32 | | leor 159 |
. . . . . . . . . . . . . . . . . 18
((a ∩ c) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) ≤ ((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) |
33 | 31, 32 | letr 137 |
. . . . . . . . . . . . . . . . 17
1 ≤ ((a⊥ ∩
c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) |
34 | 21, 33 | lebi 145 |
. . . . . . . . . . . . . . . 16
((a⊥ ∩ c⊥ ) ∪ ((a ∩ c) ∪
((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = 1 |
35 | 20, 34 | ax-r2 36 |
. . . . . . . . . . . . . . 15
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = 1 |
36 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
C (b, (b ∪ a)) =
1 |
37 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(b ∪ a) = (a ∪
b) |
38 | 37 | bi1 118 |
. . . . . . . . . . . . . . . . . . . . . . 23
((b ∪ a) ≡ (a
∪ b)) = 1 |
39 | 36, 38 | wcbtr 411 |
. . . . . . . . . . . . . . . . . . . . . 22
C (b, (a ∪ b)) =
1 |
40 | 39 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . . . 21
C ((a ∪ b), b) =
1 |
41 | 40 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . . . 20
C ((a ∪ b), b⊥ ) = 1 |
42 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . . . . 22
C (a, (a ∪ b)) =
1 |
43 | 42 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . . . 21
C ((a ∪ b), a) =
1 |
44 | 43 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . . . 20
C ((a ∪ b), a⊥ ) = 1 |
45 | 41, 44 | wfh4 426 |
. . . . . . . . . . . . . . . . . . 19
((b⊥ ∪
((a ∪ b) ∩ a⊥ )) ≡ ((b⊥ ∪ (a ∪ b))
∩ (b⊥ ∪ a⊥ ))) = 1 |
46 | | or12 80 |
. . . . . . . . . . . . . . . . . . . . . . 23
(b⊥ ∪ (a ∪ b)) =
(a ∪ (b⊥ ∪ b)) |
47 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(b⊥ ∪ b) = (b ∪
b⊥ ) |
48 | | df-t 41 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
1 = (b ∪ b⊥ ) |
49 | 48 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(b ∪ b⊥ ) = 1 |
50 | 47, 49 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(b⊥ ∪ b) = 1 |
51 | 50 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a ∪ (b⊥ ∪ b)) = (a ∪
1) |
52 | | or1 104 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(a ∪ 1) = 1 |
53 | 51, 52 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a ∪ (b⊥ ∪ b)) = 1 |
54 | 46, 53 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . 22
(b⊥ ∪ (a ∪ b)) =
1 |
55 | 54 | ran 78 |
. . . . . . . . . . . . . . . . . . . . 21
((b⊥ ∪
(a ∪ b)) ∩ (b⊥ ∪ a⊥ )) = (1 ∩ (b⊥ ∪ a⊥ )) |
56 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
(1 ∩ (b⊥ ∪
a⊥ )) = ((b⊥ ∪ a⊥ ) ∩ 1) |
57 | | an1 106 |
. . . . . . . . . . . . . . . . . . . . . 22
((b⊥ ∪ a⊥ ) ∩ 1) = (b⊥ ∪ a⊥ ) |
58 | 56, 57 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
(1 ∩ (b⊥ ∪
a⊥ )) = (b⊥ ∪ a⊥ ) |
59 | 55, 58 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b⊥ ∪
(a ∪ b)) ∩ (b⊥ ∪ a⊥ )) = (b⊥ ∪ a⊥ ) |
60 | 59 | bi1 118 |
. . . . . . . . . . . . . . . . . . 19
(((b⊥ ∪
(a ∪ b)) ∩ (b⊥ ∪ a⊥ )) ≡ (b⊥ ∪ a⊥ )) = 1 |
61 | 45, 60 | wr2 371 |
. . . . . . . . . . . . . . . . . 18
((b⊥ ∪
((a ∪ b) ∩ a⊥ )) ≡ (b⊥ ∪ a⊥ )) = 1 |
62 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . . . . 22
C (b, (b ∪ c)) =
1 |
63 | 62 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . . . 21
C ((b ∪ c), b) =
1 |
64 | 63 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . . . 20
C ((b ∪ c), b⊥ ) = 1 |
65 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
C (c, (c ∪ b)) =
1 |
66 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(c ∪ b) = (b ∪
c) |
67 | 66 | bi1 118 |
. . . . . . . . . . . . . . . . . . . . . . 23
((c ∪ b) ≡ (b
∪ c)) = 1 |
68 | 65, 67 | wcbtr 411 |
. . . . . . . . . . . . . . . . . . . . . 22
C (c, (b ∪ c)) =
1 |
69 | 68 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . . . 21
C ((b ∪ c), c) =
1 |
70 | 69 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . . . 20
C ((b ∪ c), c⊥ ) = 1 |
71 | 64, 70 | wfh4 426 |
. . . . . . . . . . . . . . . . . . 19
((b⊥ ∪
((b ∪ c) ∩ c⊥ )) ≡ ((b⊥ ∪ (b ∪ c))
∩ (b⊥ ∪ c⊥ ))) = 1 |
72 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . 23
(b⊥ ∪ (b ∪ c)) =
((b ∪ c) ∪ b⊥ ) |
73 | | or32 82 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((b ∪ c) ∪ b⊥ ) = ((b ∪ b⊥ ) ∪ c) |
74 | | ax-a2 31 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((b ∪ b⊥ ) ∪ c) = (c ∪
(b ∪ b⊥ )) |
75 | 49 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(c ∪ (b ∪ b⊥ )) = (c ∪ 1) |
76 | | or1 104 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(c ∪ 1) = 1 |
77 | 75, 76 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(c ∪ (b ∪ b⊥ )) = 1 |
78 | 74, 77 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((b ∪ b⊥ ) ∪ c) = 1 |
79 | 73, 78 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . 23
((b ∪ c) ∪ b⊥ ) = 1 |
80 | 72, 79 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . 22
(b⊥ ∪ (b ∪ c)) =
1 |
81 | 80 | ran 78 |
. . . . . . . . . . . . . . . . . . . . 21
((b⊥ ∪
(b ∪ c)) ∩ (b⊥ ∪ c⊥ )) = (1 ∩ (b⊥ ∪ c⊥ )) |
82 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
(1 ∩ (b⊥ ∪
c⊥ )) = ((b⊥ ∪ c⊥ ) ∩ 1) |
83 | | an1 106 |
. . . . . . . . . . . . . . . . . . . . . 22
((b⊥ ∪ c⊥ ) ∩ 1) = (b⊥ ∪ c⊥ ) |
84 | 82, 83 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
(1 ∩ (b⊥ ∪
c⊥ )) = (b⊥ ∪ c⊥ ) |
85 | 81, 84 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
((b⊥ ∪
(b ∪ c)) ∩ (b⊥ ∪ c⊥ )) = (b⊥ ∪ c⊥ ) |
86 | 85 | bi1 118 |
. . . . . . . . . . . . . . . . . . 19
(((b⊥ ∪
(b ∪ c)) ∩ (b⊥ ∪ c⊥ )) ≡ (b⊥ ∪ c⊥ )) = 1 |
87 | 71, 86 | wr2 371 |
. . . . . . . . . . . . . . . . . 18
((b⊥ ∪
((b ∪ c) ∩ c⊥ )) ≡ (b⊥ ∪ c⊥ )) = 1 |
88 | 61, 87 | w2or 372 |
. . . . . . . . . . . . . . . . 17
(((b⊥ ∪
((a ∪ b) ∩ a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))) ≡ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))) = 1 |
89 | 88 | wlor 368 |
. . . . . . . . . . . . . . . 16
(((a⊥ ∩
c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ )))) ≡ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ )))) = 1 |
90 | 89 | wlor 368 |
. . . . . . . . . . . . . . 15
(((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))))) ≡
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ a⊥ ) ∪ (b⊥ ∪ c⊥ ))))) = 1 |
91 | 35, 90 | wwbmpr 206 |
. . . . . . . . . . . . . 14
((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∪ ((a ∪ b) ∩
a⊥ )) ∪ (b⊥ ∪ ((b ∪ c) ∩
c⊥ ))))) =
1 |
92 | 19, 91 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ c) ∪ (((a
∪ b) ∩ a⊥ ) ∪ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
93 | 12, 92 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
94 | | ax-a3 32 |
. . . . . . . . . . . . . . 15
(((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) = ((a ∩ c) ∪
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) |
95 | 94 | bi1 118 |
. . . . . . . . . . . . . 14
((((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ ((a ∩ c) ∪
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))))) = 1 |
96 | | ax-a3 32 |
. . . . . . . . . . . . . . . . . 18
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ )) = ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) |
97 | 96 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) = (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ )) |
98 | 97 | bi1 118 |
. . . . . . . . . . . . . . . 16
(((a⊥ ∩
c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ (((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ ))) = 1 |
99 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . 20
(b⊥ ∩
((a ∪ b) ∪ (b
∪ c))) = (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ ) |
100 | 99 | lor 70 |
. . . . . . . . . . . . . . . . . . 19
((a⊥ ∩ c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) = ((a⊥ ∩ c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ )) |
101 | 100 | bi1 118 |
. . . . . . . . . . . . . . . . . 18
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ≡ ((a⊥ ∩ c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ ))) = 1 |
102 | | wcomorr 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
C ((a ∪ c), ((a ∪
c) ∪ b)) = 1 |
103 | | orordir 113 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a ∪ c) ∪ b) =
((a ∪ b) ∪ (c
∪ b)) |
104 | 66 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
((a ∪ b) ∪ (c
∪ b)) = ((a ∪ b) ∪
(b ∪ c)) |
105 | 103, 104 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a ∪ c) ∪ b) =
((a ∪ b) ∪ (b
∪ c)) |
106 | 105 | bi1 118 |
. . . . . . . . . . . . . . . . . . . . . . . 24
(((a ∪ c) ∪ b)
≡ ((a ∪ b) ∪ (b
∪ c))) = 1 |
107 | 102, 106 | wcbtr 411 |
. . . . . . . . . . . . . . . . . . . . . . 23
C ((a ∪ c), ((a ∪
b) ∪ (b ∪ c))) =
1 |
108 | 107 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . . . . 22
C (((a ∪ b) ∪ (b
∪ c)), (a ∪ c)) =
1 |
109 | 108 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . . . . 21
C (((a ∪ b) ∪ (b
∪ c)), (a ∪ c)⊥ ) = 1 |
110 | | anor3 90 |
. . . . . . . . . . . . . . . . . . . . . . 23
(a⊥ ∩ c⊥ ) = (a ∪ c)⊥ |
111 | 110 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . 22
(a ∪ c)⊥ = (a⊥ ∩ c⊥ ) |
112 | 111 | bi1 118 |
. . . . . . . . . . . . . . . . . . . . 21
((a ∪ c)⊥ ≡ (a⊥ ∩ c⊥ )) = 1 |
113 | 109, 112 | wcbtr 411 |
. . . . . . . . . . . . . . . . . . . 20
C (((a ∪ b) ∪ (b
∪ c)), (a⊥ ∩ c⊥ )) = 1 |
114 | 39, 62 | wcom2or 427 |
. . . . . . . . . . . . . . . . . . . . . 22
C (b, ((a ∪ b) ∪
(b ∪ c))) = 1 |
115 | 114 | wcomcom 414 |
. . . . . . . . . . . . . . . . . . . . 21
C (((a ∪ b) ∪ (b
∪ c)), b) = 1 |
116 | 115 | wcomcom2 415 |
. . . . . . . . . . . . . . . . . . . 20
C (((a ∪ b) ∪ (b
∪ c)), b⊥ ) = 1 |
117 | 113, 116 | wfh4 426 |
. . . . . . . . . . . . . . . . . . 19
(((a⊥ ∩
c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ )) ≡ (((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ ))) = 1 |
118 | | le1 146 |
. . . . . . . . . . . . . . . . . . . . . . 23
((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ≤ 1 |
119 | | df-t 41 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
1 = ((a⊥ ∩
c⊥ ) ∪ (a⊥ ∩ c⊥ )⊥
) |
120 | | oran 87 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
(a ∪ c) = (a⊥ ∩ c⊥
)⊥ |
121 | 120 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
(a⊥ ∩ c⊥ )⊥ = (a ∪ c) |
122 | 121 | lor 70 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
((a⊥ ∩ c⊥ ) ∪ (a⊥ ∩ c⊥ )⊥ ) =
((a⊥ ∩ c⊥ ) ∪ (a ∪ c)) |
123 | 119, 122 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . . . . 24
1 = ((a⊥ ∩
c⊥ ) ∪ (a ∪ c)) |
124 | | leo 158 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
a ≤ (a ∪ b) |
125 | | leor 159 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
c ≤ (b ∪ c) |
126 | 124, 125 | le2or 168 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
(a ∪ c) ≤ ((a
∪ b) ∪ (b ∪ c)) |
127 | 126 | lelor 166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
((a⊥ ∩ c⊥ ) ∪ (a ∪ c)) ≤
((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) |
128 | 123, 127 | bltr 138 |
. . . . . . . . . . . . . . . . . . . . . . 23
1 ≤ ((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) |
129 | 118, 128 | lebi 145 |
. . . . . . . . . . . . . . . . . . . . . 22
((a⊥ ∩ c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) = 1 |
130 | 129 | ran 78 |
. . . . . . . . . . . . . . . . . . . . 21
(((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = (1 ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) |
131 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . . . 22
(1 ∩ ((a⊥ ∩
c⊥ ) ∪ b⊥ )) = (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∩ 1) |
132 | | an1 106 |
. . . . . . . . . . . . . . . . . . . . . 22
(((a⊥ ∩
c⊥ ) ∪ b⊥ ) ∩ 1) = ((a⊥ ∩ c⊥ ) ∪ b⊥ ) |
133 | 131, 132 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . . 21
(1 ∩ ((a⊥ ∩
c⊥ ) ∪ b⊥ )) = ((a⊥ ∩ c⊥ ) ∪ b⊥ ) |
134 | 130, 133 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . . 20
(((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = ((a⊥ ∩ c⊥ ) ∪ b⊥ ) |
135 | 134 | bi1 118 |
. . . . . . . . . . . . . . . . . . 19
((((a⊥ ∩
c⊥ ) ∪ ((a ∪ b) ∪
(b ∪ c))) ∩ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) ≡ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = 1 |
136 | 117, 135 | wr2 371 |
. . . . . . . . . . . . . . . . . 18
(((a⊥ ∩
c⊥ ) ∪ (((a ∪ b) ∪
(b ∪ c)) ∩ b⊥ )) ≡ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = 1 |
137 | 101, 136 | wr2 371 |
. . . . . . . . . . . . . . . . 17
(((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ≡ ((a⊥ ∩ c⊥ ) ∪ b⊥ )) = 1 |
138 | 137 | wr5-2v 366 |
. . . . . . . . . . . . . . . 16
((((a⊥ ∩
c⊥ ) ∪ (b⊥ ∩ ((a ∪ b) ∪
(b ∪ c)))) ∪ ((b
∪ c) ∩ c⊥ )) ≡ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) =
1 |
139 | 98, 138 | wr2 371 |
. . . . . . . . . . . . . . 15
(((a⊥ ∩
c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ (((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))) =
1 |
140 | 139 | wlor 368 |
. . . . . . . . . . . . . 14
(((a ∩ c) ∪ ((a⊥ ∩ c⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) ≡ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
141 | 95, 140 | wr2 371 |
. . . . . . . . . . . . 13
((((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )))) =
1 |
142 | 141 | wlor 368 |
. . . . . . . . . . . 12
((((a ∪ b) ∩ a⊥ ) ∪ (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) ≡ (((a ∪ b) ∩
a⊥ ) ∪ ((a ∩ c) ∪
(((a⊥ ∩ c⊥ ) ∪ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ ))))) =
1 |
143 | 93, 142 | wwbmpr 206 |
. . . . . . . . . . 11
(((a ∪ b) ∩ a⊥ ) ∪ (((a ∩ c) ∪
(a⊥ ∩ c⊥ )) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) = 1 |
144 | 11, 143 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ c) ∪ (a⊥ ∩ c⊥ )) ∪ (((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ )))) = 1 |
145 | 10, 144 | ax-r2 36 |
. . . . . . . . 9
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
146 | 39 | wcomcom3 416 |
. . . . . . . . . . . . 13
C (b⊥ ,
(a ∪ b)) = 1 |
147 | 62 | wcomcom3 416 |
. . . . . . . . . . . . 13
C (b⊥ ,
(b ∪ c)) = 1 |
148 | 146, 147 | wfh1 423 |
. . . . . . . . . . . 12
((b⊥ ∩
((a ∪ b) ∪ (b
∪ c))) ≡ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))) =
1 |
149 | 148 | wr5-2v 366 |
. . . . . . . . . . 11
(((b⊥ ∩
((a ∪ b) ∪ (b
∪ c))) ∪ ((b ∪ c) ∩
c⊥ )) ≡ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = 1 |
150 | 149 | wlor 368 |
. . . . . . . . . 10
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ≡ (((a ∪ b) ∩
a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )))) = 1 |
151 | 150 | wr5-2v 366 |
. . . . . . . . 9
(((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ ((a ∪ b) ∪
(b ∪ c))) ∪ ((b
∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ≡ ((((a ∪ b) ∩
a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) = 1 |
152 | 145, 151 | wwbmp 205 |
. . . . . . . 8
((((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
153 | 152 | ax-r1 35 |
. . . . . . 7
1 = ((((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
154 | | ax-a3 32 |
. . . . . . . . . . 11
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c))))
∪ ((b ∪ c) ∩ c⊥ )) = (((a ∪ b) ∩
a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) |
155 | 154 | ax-r1 35 |
. . . . . . . . . 10
(((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = ((((a ∪ b) ∩
a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c))))
∪ ((b ∪ c) ∩ c⊥ )) |
156 | | ax-a3 32 |
. . . . . . . . . . . 12
((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c))) =
(((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))) |
157 | 156 | ax-r1 35 |
. . . . . . . . . . 11
(((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))) =
((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c))) |
158 | 157 | ax-r5 38 |
. . . . . . . . . 10
((((a ∪ b) ∩ a⊥ ) ∪ ((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c))))
∪ ((b ∪ c) ∩ c⊥ )) = (((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )) |
159 | 155, 158 | ax-r2 36 |
. . . . . . . . 9
(((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = (((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )) |
160 | | ax-a3 32 |
. . . . . . . . 9
(((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ )) = ((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) |
161 | 159, 160 | ax-r2 36 |
. . . . . . . 8
(((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) = ((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) |
162 | 161 | ax-r5 38 |
. . . . . . 7
((((a ∪ b) ∩ a⊥ ) ∪ (((b⊥ ∩ (a ∪ b))
∪ (b⊥ ∩ (b ∪ c)))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = (((((a ∪ b) ∩
a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
163 | 153, 162 | ax-r2 36 |
. . . . . 6
1 = (((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
164 | | ancom 74 |
. . . . . . . . . 10
(b⊥ ∩ (a ∪ b)) =
((a ∪ b) ∩ b⊥ ) |
165 | 164 | lor 70 |
. . . . . . . . 9
(((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b))) =
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩
b⊥ )) |
166 | | ledi 174 |
. . . . . . . . 9
(((a ∪ b) ∩ a⊥ ) ∪ ((a ∪ b) ∩
b⊥ )) ≤ ((a ∪ b) ∩
(a⊥ ∪ b⊥ )) |
167 | 165, 166 | bltr 138 |
. . . . . . . 8
(((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
≤ ((a ∪ b) ∩ (a⊥ ∪ b⊥ )) |
168 | | ancom 74 |
. . . . . . . . . 10
(b⊥ ∩ (b ∪ c)) =
((b ∪ c) ∩ b⊥ ) |
169 | 168 | ax-r5 38 |
. . . . . . . . 9
((b⊥ ∩
(b ∪ c)) ∪ ((b
∪ c) ∩ c⊥ )) = (((b ∪ c) ∩
b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )) |
170 | | ledi 174 |
. . . . . . . . 9
(((b ∪ c) ∩ b⊥ ) ∪ ((b ∪ c) ∩
c⊥ )) ≤ ((b ∪ c) ∩
(b⊥ ∪ c⊥ )) |
171 | 169, 170 | bltr 138 |
. . . . . . . 8
((b⊥ ∩
(b ∪ c)) ∪ ((b
∪ c) ∩ c⊥ )) ≤ ((b ∪ c) ∩
(b⊥ ∪ c⊥ )) |
172 | 167, 171 | le2or 168 |
. . . . . . 7
((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ≤ (((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) |
173 | 172 | leror 152 |
. . . . . 6
(((((a ∪ b) ∩ a⊥ ) ∪ (b⊥ ∩ (a ∪ b)))
∪ ((b⊥ ∩ (b ∪ c))
∪ ((b ∪ c) ∩ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) ≤ ((((a ∪ b) ∩
(a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
174 | 163, 173 | bltr 138 |
. . . . 5
1 ≤ ((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) |
175 | 9, 174 | lebi 145 |
. . . 4
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
176 | 8, 175 | ax-r2 36 |
. . 3
((((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ ((b ∪ c) ∩
(b⊥ ∪ c⊥ ))) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ ))) = 1 |
177 | 7, 176 | ax-r2 36 |
. 2
(((a ∪ b) ∩ (a⊥ ∪ b⊥ )) ∪ (((b ∪ c) ∩
(b⊥ ∪ c⊥ )) ∪ ((a ∩ c) ∪
(a⊥ ∩ c⊥ )))) = 1 |
178 | 5, 177 | ax-r2 36 |
1
((a ≡ b)⊥ ∪ ((b ≡ c)⊥ ∪ (a ≡ c))) =
1 |