![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > le2or | GIF version |
Description: Disjunction of 2 l.e.'s. |
Ref | Expression |
---|---|
le2.1 | a ≤ b |
le2.2 | c ≤ d |
Ref | Expression |
---|---|
le2or | (a ∪ c) ≤ (b ∪ d) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2.1 | . . 3 a ≤ b | |
2 | 1 | leror 152 | . 2 (a ∪ c) ≤ (b ∪ c) |
3 | le2.2 | . . 3 c ≤ d | |
4 | 3 | lelor 166 | . 2 (b ∪ c) ≤ (b ∪ d) |
5 | 2, 4 | letr 137 | 1 (a ∪ c) ≤ (b ∪ d) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: lel2or 170 ler2or 172 ledi 174 ledio 176 ska15 244 id5leid0 351 ska2 432 ka4ot 435 i3bi 496 lem4 511 binr3 519 i3th5 547 3vcom 813 3vded22 818 sadm3 838 mlaconjo 886 govar 896 distoa 944 oa3to4lem3 947 oa4to6lem4 963 oa4uto4g 975 oa4uto4 977 oa3-u2lem 986 d3oa 995 oadistd 1023 4oadist 1044 dp15lemf 1157 dp35lemd 1172 dp41lemh 1188 dp41leml 1191 xdp41 1196 xdp15 1197 xxdp41 1199 xxdp15 1200 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 |
Copyright terms: Public domain | W3C validator |