 Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  w2or GIF version

Theorem w2or 372
 Description: Join both sides with disjunction.
Hypotheses
Ref Expression
w2or.1 (ab) = 1
w2or.2 (cd) = 1
Assertion
Ref Expression
w2or ((ac) ≡ (bd)) = 1

Proof of Theorem w2or
StepHypRef Expression
1 w2or.2 . . 3 (cd) = 1
21wlor 368 . 2 ((ac) ≡ (ad)) = 1
3 w2or.1 . . 3 (ab) = 1
43wr5-2v 366 . 2 ((ad) ≡ (bd)) = 1
52, 4wr2 371 1 ((ac) ≡ (bd)) = 1
 Colors of variables: term Syntax hints:   = wb 1   ≡ tb 5   ∪ wo 6  1wt 8 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-wom 361 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-i2 45  df-le1 130  df-le2 131 This theorem is referenced by:  wcomlem  382  wdf-c1  383  wbctr  410  wcbtr  411  wcomcom5  420  wcomdr  421  wfh1  423  wcom2or  427  ska2  432  wddi2  1106
 Copyright terms: Public domain W3C validator