Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8t Structured version   Visualization version   GIF version

Theorem wl-sb8t 32512
 Description: Substitution of variable in universal quantifier. Closed form of sb8 2412. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-sb8t (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))

Proof of Theorem wl-sb8t
StepHypRef Expression
1 nfa1 2015 . 2 𝑥𝑥𝑦𝜑
2 nfnf1 2018 . . 3 𝑦𝑦𝜑
32nfal 2139 . 2 𝑦𝑥𝑦𝜑
4 sp 2041 . 2 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝜑)
5 wl-nfs1t 32503 . . 3 (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
65sps 2043 . 2 (∀𝑥𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
7 sbequ12 2097 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
87a1i 11 . 2 (∀𝑥𝑦𝜑 → (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)))
91, 3, 4, 6, 8cbv2 2258 1 (∀𝑥𝑦𝜑 → (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473  Ⅎwnf 1699  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by:  wl-sb8et  32513  wl-sbhbt  32514
 Copyright terms: Public domain W3C validator