Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfs1t Structured version   Visualization version   GIF version

Theorem wl-nfs1t 32503
 Description: If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. Closed form of nfs1 2353. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-nfs1t (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)

Proof of Theorem wl-nfs1t
StepHypRef Expression
1 sbequ12r 2098 . . . . . 6 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑𝜑))
21equcoms 1934 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
32sps 2043 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
43drnf1 2317 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥[𝑦 / 𝑥]𝜑 ↔ Ⅎ𝑦𝜑))
54biimprd 237 . 2 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑))
6 nfsb2 2348 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
76a1d 25 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑))
85, 7pm2.61i 175 1 (Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195  ∀wal 1473  Ⅎwnf 1699  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868 This theorem is referenced by:  wl-sb8t  32512
 Copyright terms: Public domain W3C validator