Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uvtxassvtx Structured version   Visualization version   GIF version

Theorem uvtxassvtx 40616
 Description: The set of the universal vertices is a subset of the set of all vertices. (Contributed by AV, 23-Dec-2020.)
Hypothesis
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxassvtx (UnivVtx‘𝐺) ⊆ 𝑉

Proof of Theorem uvtxassvtx
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 uvtxael.v . . 3 𝑉 = (Vtx‘𝐺)
21uvtxaisvtx 40615 . 2 (𝑛 ∈ (UnivVtx‘𝐺) → 𝑛𝑉)
32ssriv 3572 1 (UnivVtx‘𝐺) ⊆ 𝑉
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ⊆ wss 3540  ‘cfv 5804  Vtxcvtx 25673  UnivVtxcuvtxa 40551 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-uvtxa 40556 This theorem is referenced by:  vdiscusgrb  40746
 Copyright terms: Public domain W3C validator