Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uunT1 Structured version   Visualization version   GIF version

Theorem uunT1 38028
 Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) Proof was revised to accomodate a possible future version of df-tru 1478. (Revised by David A. Wheeler, 8-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uunT1.1 ((⊤ ∧ 𝜑) → 𝜓)
Assertion
Ref Expression
uunT1 (𝜑𝜓)

Proof of Theorem uunT1
StepHypRef Expression
1 orc 399 . . 3 (𝜑 → (𝜑 ∨ ¬ 𝜑))
2 tru 1479 . . . . 5
3 biid 250 . . . . 5 (𝜑𝜑)
42, 32th 253 . . . 4 (⊤ ↔ (𝜑𝜑))
5 exmid 430 . . . . . 6 (𝜑 ∨ ¬ 𝜑)
65a1i 11 . . . . 5 ((𝜑𝜑) → (𝜑 ∨ ¬ 𝜑))
7 biidd 251 . . . . 5 ((𝜑 ∨ ¬ 𝜑) → (𝜑𝜑))
86, 7impbii 198 . . . 4 ((𝜑𝜑) ↔ (𝜑 ∨ ¬ 𝜑))
94, 8bitri 263 . . 3 (⊤ ↔ (𝜑 ∨ ¬ 𝜑))
101, 9sylibr 223 . 2 (𝜑 → ⊤)
11 uunT1.1 . 2 ((⊤ ∧ 𝜑) → 𝜓)
1210, 11mpancom 700 1 (𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383  ⊤wtru 1476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478 This theorem is referenced by:  uunT21  38030  sspwimpALT  38183
 Copyright terms: Public domain W3C validator