Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  un0.1 Structured version   Visualization version   GIF version

Theorem un0.1 38027
Description: is the constant true, a tautology (see df-tru 1478). Kleene's "empty conjunction" is logically equivalent to . In a virtual deduction we shall interpret to be the empty wff or the empty collection of virtual hypotheses. in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
un0.1.1 (      ▶   𝜑   )
un0.1.2 (   𝜓   ▶   𝜒   )
un0.1.3 (   (      ,   𝜓   )   ▶   𝜃   )
Assertion
Ref Expression
un0.1 (   𝜓   ▶   𝜃   )

Proof of Theorem un0.1
StepHypRef Expression
1 un0.1.1 . . . 4 (      ▶   𝜑   )
21in1 37808 . . 3 (⊤ → 𝜑)
3 un0.1.2 . . . 4 (   𝜓   ▶   𝜒   )
43in1 37808 . . 3 (𝜓𝜒)
5 un0.1.3 . . . 4 (   (      ,   𝜓   )   ▶   𝜃   )
65dfvd2ani 37820 . . 3 ((⊤ ∧ 𝜓) → 𝜃)
72, 4, 6uun0.1 38026 . 2 (𝜓𝜃)
87dfvd1ir 37810 1 (   𝜓   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wtru 1476  (   wvd1 37806  (   wvhc2 37817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-tru 1478  df-vd1 37807  df-vhc2 37818
This theorem is referenced by:  sspwimpVD  38177
  Copyright terms: Public domain W3C validator