Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > un0.1 | Structured version Visualization version GIF version |
Description: ⊤ is the constant true, a tautology (see df-tru 1478). Kleene's "empty conjunction" is logically equivalent to ⊤. In a virtual deduction we shall interpret ⊤ to be the empty wff or the empty collection of virtual hypotheses. ⊤ in a virtual deduction translated into conventional notation we shall interpret to be Kleene's empty conjunction. If 𝜃 is true given the empty collection of virtual hypotheses and another collection of virtual hypotheses, then it is true given only the other collection of virtual hypotheses. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
un0.1.1 | ⊢ ( ⊤ ▶ 𝜑 ) |
un0.1.2 | ⊢ ( 𝜓 ▶ 𝜒 ) |
un0.1.3 | ⊢ ( ( ⊤ , 𝜓 ) ▶ 𝜃 ) |
Ref | Expression |
---|---|
un0.1 | ⊢ ( 𝜓 ▶ 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0.1.1 | . . . 4 ⊢ ( ⊤ ▶ 𝜑 ) | |
2 | 1 | in1 37808 | . . 3 ⊢ (⊤ → 𝜑) |
3 | un0.1.2 | . . . 4 ⊢ ( 𝜓 ▶ 𝜒 ) | |
4 | 3 | in1 37808 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | un0.1.3 | . . . 4 ⊢ ( ( ⊤ , 𝜓 ) ▶ 𝜃 ) | |
6 | 5 | dfvd2ani 37820 | . . 3 ⊢ ((⊤ ∧ 𝜓) → 𝜃) |
7 | 2, 4, 6 | uun0.1 38026 | . 2 ⊢ (𝜓 → 𝜃) |
8 | 7 | dfvd1ir 37810 | 1 ⊢ ( 𝜓 ▶ 𝜃 ) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1476 ( wvd1 37806 ( wvhc2 37817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-tru 1478 df-vd1 37807 df-vhc2 37818 |
This theorem is referenced by: sspwimpVD 38177 |
Copyright terms: Public domain | W3C validator |