Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uunT21 Structured version   Visualization version   GIF version

Theorem uunT21 38030
Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uunT21.1 ((⊤ ∧ (𝜑𝜓)) → 𝜒)
Assertion
Ref Expression
uunT21 ((𝜑𝜓) → 𝜒)

Proof of Theorem uunT21
StepHypRef Expression
1 uunT21.1 . 2 ((⊤ ∧ (𝜑𝜓)) → 𝜒)
21uunT1 38028 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wtru 1476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator