Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrloopvtxel | Structured version Visualization version GIF version |
Description: A vertex in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop 40475). (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
uspgrloopvtx.g | ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 |
Ref | Expression |
---|---|
uspgrloopvtxel | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrloopvtx.g | . . 3 ⊢ 𝐺 = 〈𝑉, {〈𝐴, {𝑁}〉}〉 | |
2 | 1 | uspgrloopvtx 40731 | . 2 ⊢ (𝑉 ∈ 𝑊 → (Vtx‘𝐺) = 𝑉) |
3 | eleq2 2677 | . . . . 5 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 ↔ 𝑁 ∈ (Vtx‘𝐺))) | |
4 | 3 | biimpd 218 | . . . 4 ⊢ (𝑉 = (Vtx‘𝐺) → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
5 | 4 | eqcoms 2618 | . . 3 ⊢ ((Vtx‘𝐺) = 𝑉 → (𝑁 ∈ 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
6 | 5 | com12 32 | . 2 ⊢ (𝑁 ∈ 𝑉 → ((Vtx‘𝐺) = 𝑉 → 𝑁 ∈ (Vtx‘𝐺))) |
7 | 2, 6 | mpan9 485 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉) → 𝑁 ∈ (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {csn 4125 〈cop 4131 ‘cfv 5804 Vtxcvtx 25673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-1st 7059 df-vtx 25675 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |