MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12f Structured version   Visualization version   GIF version

Theorem tz6.12f 6122
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1 𝑦𝐹
Assertion
Ref Expression
tz6.12f ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem tz6.12f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4341 . . . . 5 (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩)
21eleq1d 2672 . . . 4 (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
3 tz6.12f.1 . . . . . . 7 𝑦𝐹
43nfel2 2767 . . . . . 6 𝑦𝐴, 𝑧⟩ ∈ 𝐹
5 nfv 1830 . . . . . 6 𝑧𝐴, 𝑦⟩ ∈ 𝐹
64, 5, 2cbveu 2493 . . . . 5 (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
76a1i 11 . . . 4 (𝑧 = 𝑦 → (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹))
82, 7anbi12d 743 . . 3 (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)))
9 eqeq2 2621 . . 3 (𝑧 = 𝑦 → ((𝐹𝐴) = 𝑧 ↔ (𝐹𝐴) = 𝑦))
108, 9imbi12d 333 . 2 (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)))
11 tz6.12 6121 . 2 ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧)
1210, 11chvarv 2251 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  ∃!weu 2458  wnfc 2738  cop 4131  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator