Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trficl | Structured version Visualization version GIF version |
Description: The class of all transitive relations has the finite intersection property. (Contributed by Richard Penner, 1-Jan-2020.) (Proof shortened by Richard Penner, 3-Jan-2020.) |
Ref | Expression |
---|---|
trficl.a | ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} |
Ref | Expression |
---|---|
trficl | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trficl.a | . 2 ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} | |
2 | vex 3176 | . . 3 ⊢ 𝑥 ∈ V | |
3 | 2 | inex1 4727 | . 2 ⊢ (𝑥 ∩ 𝑦) ∈ V |
4 | id 22 | . . . 4 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → 𝑧 = (𝑥 ∩ 𝑦)) | |
5 | 4, 4 | coeq12d 5208 | . . 3 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → (𝑧 ∘ 𝑧) = ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦))) |
6 | 5, 4 | sseq12d 3597 | . 2 ⊢ (𝑧 = (𝑥 ∩ 𝑦) → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦)) ⊆ (𝑥 ∩ 𝑦))) |
7 | id 22 | . . . 4 ⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) | |
8 | 7, 7 | coeq12d 5208 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∘ 𝑧) = (𝑥 ∘ 𝑥)) |
9 | 8, 7 | sseq12d 3597 | . 2 ⊢ (𝑧 = 𝑥 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑥 ∘ 𝑥) ⊆ 𝑥)) |
10 | id 22 | . . . 4 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
11 | 10, 10 | coeq12d 5208 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∘ 𝑧) = (𝑦 ∘ 𝑦)) |
12 | 11, 10 | sseq12d 3597 | . 2 ⊢ (𝑧 = 𝑦 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (𝑦 ∘ 𝑦) ⊆ 𝑦)) |
13 | trin2 5438 | . 2 ⊢ (((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦) → ((𝑥 ∩ 𝑦) ∘ (𝑥 ∩ 𝑦)) ⊆ (𝑥 ∩ 𝑦)) | |
14 | 1, 3, 6, 9, 12, 13 | cllem0 36890 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 {cab 2596 ∀wral 2896 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 ∘ ccom 5042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-co 5047 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |