Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcleq1 Structured version   Visualization version   GIF version

Theorem trcleq1 13576
 Description: Equality of relations implies equality of transitive closures. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
trcleq1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
Distinct variable groups:   𝑅,𝑟   𝑆,𝑟

Proof of Theorem trcleq1
StepHypRef Expression
1 cleq1 13570 1 (𝑅 = 𝑆 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} = {𝑟 ∣ (𝑆𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  {cab 2596   ⊆ wss 3540  ∩ cint 4410   ∘ ccom 5042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-in 3547  df-ss 3554  df-int 4411 This theorem is referenced by:  trclfv  13589
 Copyright terms: Public domain W3C validator