Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglnne0 | Structured version Visualization version GIF version |
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
tglnne0.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglnne0.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglnne0.1 | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
Ref | Expression |
---|---|
tglnne0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2610 | . . . . 5 ⊢ (Itv‘𝐺) = (Itv‘𝐺) | |
3 | tglnne0.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglnne0.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 762 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | simpllr 795 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (Base‘𝐺)) | |
7 | simplr 788 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ (Base‘𝐺)) | |
8 | simprr 792 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
9 | 1, 2, 3, 5, 6, 7, 8 | tglinerflx1 25328 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦)) |
10 | simprl 790 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 = (𝑥𝐿𝑦)) | |
11 | 9, 10 | eleqtrrd 2691 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐴) |
12 | ne0i 3880 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ≠ ∅) |
14 | tglnne0.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
15 | 1, 2, 3, 4, 14 | tgisline 25322 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
16 | 13, 15 | r19.29vva 3062 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∅c0 3874 ran crn 5039 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 TarskiGcstrkg 25129 Itvcitv 25135 LineGclng 25136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-trkgc 25147 df-trkgb 25148 df-trkgcb 25149 df-trkg 25152 |
This theorem is referenced by: hpgerlem 25457 |
Copyright terms: Public domain | W3C validator |