MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne0 Structured version   Visualization version   GIF version

Theorem tglnne0 25335
Description: A line 𝐴 has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
tglnne0.l 𝐿 = (LineG‘𝐺)
tglnne0.g (𝜑𝐺 ∈ TarskiG)
tglnne0.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tglnne0 (𝜑𝐴 ≠ ∅)

Proof of Theorem tglnne0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2610 . . . . 5 (Itv‘𝐺) = (Itv‘𝐺)
3 tglnne0.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglnne0.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 762 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 simpllr 795 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (Base‘𝐺))
7 simplr 788 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦 ∈ (Base‘𝐺))
8 simprr 792 . . . . 5 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
91, 2, 3, 5, 6, 7, 8tglinerflx1 25328 . . . 4 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥 ∈ (𝑥𝐿𝑦))
10 simprl 790 . . . 4 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 = (𝑥𝐿𝑦))
119, 10eleqtrrd 2691 . . 3 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝐴)
12 ne0i 3880 . . 3 (𝑥𝐴𝐴 ≠ ∅)
1311, 12syl 17 . 2 ((((𝜑𝑥 ∈ (Base‘𝐺)) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴 ≠ ∅)
14 tglnne0.1 . . 3 (𝜑𝐴 ∈ ran 𝐿)
151, 2, 3, 4, 14tgisline 25322 . 2 (𝜑 → ∃𝑥 ∈ (Base‘𝐺)∃𝑦 ∈ (Base‘𝐺)(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
1613, 15r19.29vva 3062 1 (𝜑𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  c0 3874  ran crn 5039  cfv 5804  (class class class)co 6549  Basecbs 15695  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152
This theorem is referenced by:  hpgerlem  25457
  Copyright terms: Public domain W3C validator