Proof of Theorem sbco4lem
Step | Hyp | Ref
| Expression |
1 | | sbcom2 2433 |
. . 3
⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑) |
2 | 1 | sbbii 1874 |
. 2
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑) |
3 | | nfv 1830 |
. . . . . . 7
⊢
Ⅎ𝑤𝜑 |
4 | 3 | sbco2 2403 |
. . . . . 6
⊢ ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑) |
5 | 4 | sbbii 1874 |
. . . . 5
⊢ ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
6 | 5 | sbbii 1874 |
. . . 4
⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
7 | 6 | sbbii 1874 |
. . 3
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
8 | | nfv 1830 |
. . . 4
⊢
Ⅎ𝑤[𝑦 / 𝑥][𝑣 / 𝑦]𝜑 |
9 | 8 | sbco2 2403 |
. . 3
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
10 | 7, 9 | bitri 263 |
. 2
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
11 | | sbid2v 2445 |
. . . 4
⊢ ([𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑) |
12 | 11 | sbbii 1874 |
. . 3
⊢ ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
13 | 12 | sbbii 1874 |
. 2
⊢ ([𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
14 | 2, 10, 13 | 3bitr3i 289 |
1
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |