Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4lem Structured version   Unicode version

Theorem sbco4lem 2185
 Description: Lemma for sbco4 2186. It replaces the temporary variable with another temporary variable . (Contributed by Jim Kingdon, 26-Sep-2018.)
Assertion
Ref Expression
sbco4lem
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem sbco4lem
StepHypRef Expression
1 sbcom2 2158 . . 3
21sbbii 1709 . 2
3 nfv 1674 . . . . . . 7
43sbco2 2118 . . . . . 6
54sbbii 1709 . . . . 5
65sbbii 1709 . . . 4
76sbbii 1709 . . 3
8 nfv 1674 . . . 4
98sbco2 2118 . . 3
107, 9bitri 249 . 2
11 nfv 1674 . . . . 5
1211sbid2 2115 . . . 4
1312sbbii 1709 . . 3
1413sbbii 1709 . 2
152, 10, 143bitr3i 275 1
 Colors of variables: wff setvar class Syntax hints:   wb 184  wsb 1702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703 This theorem is referenced by:  sbco4  2186
 Copyright terms: Public domain W3C validator