Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb1 Structured version   Visualization version   GIF version

Theorem sb1 1870
 Description: One direction of a simplified definition of substitution. The converse requires either a dv condition (sb5 2418) or a non-freeness hypothesis (sb5f 2374). (Contributed by NM, 13-May-1993.)
Assertion
Ref Expression
sb1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb1
StepHypRef Expression
1 df-sb 1868 . 2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
21simprbi 479 1 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1695  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385  df-sb 1868 This theorem is referenced by:  spsbe  1871  sb4  2344  sb4a  2345  sb4e  2350  sb6  2417  bj-sb4v  31945  bj-sb6  31955  bj-sb3b  31992  wl-sb5nae  32519
 Copyright terms: Public domain W3C validator