Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb4a | Structured version Visualization version GIF version |
Description: A version of sb4 2344 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
sb4a | ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1870 | . 2 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)) | |
2 | equs5a 2336 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | 1, 2 | syl 17 | 1 ⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1473 ∃wex 1695 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: hbsb2a 2349 sb6f 2373 bj-hbsb2av 31948 |
Copyright terms: Public domain | W3C validator |