MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4 Structured version   Visualization version   GIF version

Theorem sb4 2343
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sb4 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb4
StepHypRef Expression
1 sb1 1869 . 2 ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
2 equs5 2338 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2syl5ib 232 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wal 1472  wex 1694  [wsb 1866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-12 2032  ax-13 2232
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867
This theorem is referenced by:  sb4b  2345  hbsb2  2346  dfsb2  2360  sbequi  2362  sbi1  2379
  Copyright terms: Public domain W3C validator