Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1rn Structured version   Visualization version   GIF version

Theorem s1rn 13232
 Description: The range of a single-symbol word. (Contributed by Mario Carneiro, 18-Jul-2016.)
Assertion
Ref Expression
s1rn (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})

Proof of Theorem s1rn
StepHypRef Expression
1 s1val 13231 . . 3 (𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21rneqd 5274 . 2 (𝐴𝑉 → ran ⟨“𝐴”⟩ = ran {⟨0, 𝐴⟩})
3 c0ex 9913 . . 3 0 ∈ V
43rnsnop 5534 . 2 ran {⟨0, 𝐴⟩} = {𝐴}
52, 4syl6eq 2660 1 (𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {csn 4125  ⟨cop 4131  ran crn 5039  0cc0 9815  ⟨“cs1 13149 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-s1 13157 This theorem is referenced by:  mrsubvrs  30673
 Copyright terms: Public domain W3C validator