Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rusgrrgr Structured version   Visualization version   GIF version

Theorem rusgrrgr 40763
 Description: A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrrgr (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)

Proof of Theorem rusgrrgr
StepHypRef Expression
1 rusgrprop 40762 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
21simprd 478 1 (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977   class class class wbr 4583   USGraph cusgr 40379   RegGraph crgr 40755   RegUSGraph crusgr 40756 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-rusgr 40758 This theorem is referenced by:  0grrgr  40780  rgrprc  40791  frrusgrord  41504
 Copyright terms: Public domain W3C validator