MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgranumwlklem2 Structured version   Visualization version   GIF version

Theorem rusgranumwlklem2 26477
Description: Lemma 2 for rusgranumwlk 26484. (Contributed by Alexander van der Vekens, 21-Jul-2018.)
Hypotheses
Ref Expression
rusgranumwlk.w 𝑊 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ (𝑉 Walks 𝐸) ∣ (#‘(1st𝑐)) = 𝑛})
rusgranumwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
Assertion
Ref Expression
rusgranumwlklem2 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑊𝑁) ∣ ((2nd𝑤)‘0) = 𝑃}))
Distinct variable groups:   𝐸,𝑐,𝑛   𝑁,𝑐,𝑛   𝑉,𝑐,𝑛   𝑣,𝑁,𝑤   𝑃,𝑛,𝑣,𝑤   𝑣,𝑉   𝑛,𝑊,𝑣,𝑤
Allowed substitution hints:   𝑃(𝑐)   𝐸(𝑤,𝑣)   𝐿(𝑤,𝑣,𝑛,𝑐)   𝑉(𝑤)   𝑊(𝑐)

Proof of Theorem rusgranumwlklem2
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑛 = 𝑁 → (𝑊𝑛) = (𝑊𝑁))
21adantl 481 . . . 4 ((𝑣 = 𝑃𝑛 = 𝑁) → (𝑊𝑛) = (𝑊𝑁))
3 eqeq2 2621 . . . . 5 (𝑣 = 𝑃 → (((2nd𝑤)‘0) = 𝑣 ↔ ((2nd𝑤)‘0) = 𝑃))
43adantr 480 . . . 4 ((𝑣 = 𝑃𝑛 = 𝑁) → (((2nd𝑤)‘0) = 𝑣 ↔ ((2nd𝑤)‘0) = 𝑃))
52, 4rabeqbidv 3168 . . 3 ((𝑣 = 𝑃𝑛 = 𝑁) → {𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣} = {𝑤 ∈ (𝑊𝑁) ∣ ((2nd𝑤)‘0) = 𝑃})
65fveq2d 6107 . 2 ((𝑣 = 𝑃𝑛 = 𝑁) → (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}) = (#‘{𝑤 ∈ (𝑊𝑁) ∣ ((2nd𝑤)‘0) = 𝑃}))
7 rusgranumwlk.l . 2 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (#‘{𝑤 ∈ (𝑊𝑛) ∣ ((2nd𝑤)‘0) = 𝑣}))
8 fvex 6113 . 2 (#‘{𝑤 ∈ (𝑊𝑁) ∣ ((2nd𝑤)‘0) = 𝑃}) ∈ V
96, 7, 8ovmpt2a 6689 1 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑊𝑁) ∣ ((2nd𝑤)‘0) = 𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  0cc0 9815  0cn0 11169  #chash 12979   Walks cwalk 26026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554
This theorem is referenced by:  rusgranumwlklem3  26478
  Copyright terms: Public domain W3C validator